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The Euler and Navier-Stokes equations

I Incompressible Navier-Stokes

∂tuNS + uNS · ∇uNS − ν∆uNS +∇pNS = 0, ∇ · uNS = 0,

I Incompressible Euler

∂tuE + uE · ∇uE +∇pE = 0, ∇ · uE = 0.

I Boundary conditions: Dirichlet for Navier-Stokes

uNS
|∂Ω = 0,

and non-penetrating for Euler

uE
|∂Ω · n = 0.



The question of inviscid limit
I Initial conditions are asymptotically the same:

‖uNS
0 − uE

0‖L2 → 0 as ν → 0.

I Finite time horizon: fix T > 0.
I For simplicity, fix: d = 2 and Ω = H.
I Navier-Stokes energy inequality:

‖uNS(t)‖2
L2 + 2ν

∫ t

0
‖∇uNS(s)‖2

L2ds ≤ ‖uNS
0 ‖2

L2 .

I Space of convergence: the energy space L∞(0,T ; L2(H)).
I The problem:

sup
t∈[0,T ]

‖uNS(t)− uE(t)‖L2 → 0 as ν → 0 ???

I Smooth background Euler solution: uE
0 ∈ Hs(H), for some s > 2.

I CE is any constant that depends on ‖uE‖L∞(0,T ;Hs(H)).



Kato (’84) and friends

I Kato (’84): the inviscid limit holds if and only if

lim
ν→0

ν

∫ T

0

∫
x2≤O(ν)

|∇uNS(x , t)|2dxdt = 0

I Temam-Wang (’98), and Wang (’01):

only tangential gradients, but thicker layer δ(ν) : lim
ν→0

δ(ν)

ν
= 0.

I Kelliher (’08): inviscid limit holds if and only if

ωNS → ωE − uE
1µ∂H in (H1(H))∗

I Bardos-Titi (’15): inviscid limit holds if and only if

νωNS ⇀ 0 in D′([0,T ], ∂H)



Further “positive” results on the inviscid limit

I Masmoudi (’98): inviscid limit holds if −ν∆ is replaced by
anisotropic viscosity −ν1∂yy − ν2∂xx , with ν1/ν2 → 0

I Lopes Filho-Mazzucato-Nussenzveig Lopes-Taylor (’08):
vanishing viscosity limits holds for circularly symmetric 2D flows
on a rotating boundary

I similar positive results in other symmetric geometries:
Iftimie-Lopes Filho-Nussenzveig Lopes (’03), Lopes
Filho-Kelliher-Nussenzveig Lopes (’09); Mazzucato, Taylor (’11);

I Guo-Nguyen (’15): inviscid limit holds for a steady moving plate
I Bardos-Szekelyhidi-Wiedemann (’14): weak-strong uniqueness if

Hölder near the boundary
I Bardos-Nguyen (’14): Kato-type results for compressible fluids



Inviscid limit holds if the Prandtl expansion is valid

Theorems(!): if the initial datum obeys [...] then inviscid limit holds.
I Sammartino-Caflisch (’98): inviscid limit holds if the initial datum

is real analytic in all variables.
I Maekawa (’14): inviscid limit holds if the initial vorticity is

identically vanishing near ∂H.



Asymptotic Expansions in the inviscid limit: Prandtl
I In the BL: uNS

1 |y=0 has to jump from 0 to uE
1|y=0 = O(1).

I In the BL: dominating viscous term ν∂yy uNS
1 = O(1), so that the

thickness of the BL should be

ε =
√
ν

I For ν � 1, it is natural to consider the asymptotic expansion

uNS = u(NS,0) + εu(NS,1) + ε2u(NS,2) + . . .

where as before ε =
√
ν

I outside of the BL: u(NS,0) ≈ uE

I inside the BL: u(NS,0) ≈ uP

I let Y = y/ε be the boundary layer variable
I Prandtl plugs in the ansatz:

u(NS,0)(x , y) ≈ (uP
1(x ,Y ), εuP

2(x ,Y ))

in the Navier-Stokes equations, and formally sends ε to 0



The Prandtl boundary layer equations

I In the limit we obtain the Prandtl boundary layer equations:

∂tuP
1 − ∂YY uP

1 + uP
1∂xuP

1 + uP
2∂Y uP

1 + ∂xpP = 0
∂Y pP = 0
∂xuP

1 + ∂Y uP
2 = 0

I Boundary conditions

lim
Y→∞

uP
1 = uE

1(y = 0) = UE

lim
Y→∞

pP = pE(y = 0) = PE

uP
1(Y = 0) = uP

2(Y = 0) = 0

I Where UE and PE obey the Bernoulli equations

∂tUE + UE∂xUE = −∂xPE



Mathematical issues for the Prandtl equations
Well-posedness in suitable functional spaces:

I 2D Local existence. Monotonic in y datum.
I Oleinik (’66): Crocco transform. Strong solutions.
I Xin and Zhang (’04): Weak solutions for pressure of fixed sign.
I Masmoudi-Wong (’12): energy methods + magic cancellation: the

function g = ∂y u − u∂y log(∂y u) obeys better bounds than u or ∂y u.
I In a similar spirit: Alexandre-Wang-Xu-Yang (’14).

I 2D&3D Local Existence. Analytic datum.
I Caflisch and Sammartino (’98 - Part I): analyticity w.r.t. both x and

y , exponential decay in y .
I Cannone-Lombardo-Sammartino (’03): analyticity w.r.t. only x ,

exponential decay in y .
I Kukavica-V. (’12): energy method; analyticity w.r.t. only x , any

integrable decay in y .
I Local existence for non-analytic datum with critical points.

I Gerard-Varet—Masmoudi (’13): Gevrey 7/4 initial datum with
finitely many non-degenerate critical points, exponential decay in y .

I Kukavica-Masmoudi-V.-Wong (’14): interplay between monotonicity
in y an analyticity in x .

I Xu-Zhang (’15): Sobolev initial datum which is close to a shear flow
with non-degenerate critical points, algebraic decay in y .



Mathematical issues for the Prandtl equations

Ill-posedness:
I Sobolev ill-posedness: Grenier (’00), Gerard-Varet and Dormy

(’09), Gerard-Varet and Nguyen (’12); Guo and Nguyen (’12)
Justify the formal derivation of the Prandtl equations in the inviscid
limit, i.e. prove that

uNS = uE(1− χBL) + uPχBL +O(ε)

I Sammartino and Caflisch (’98 - Part II): positive results in the
real-analytic case

I Grenier(’00); Guo-Nguyen (’12); Grenier-Guo-Nguyen (’13-’14):
negative results in Sobolev spaces

Note: just because Prandtl is ill-posed (aka. strongly unstable) in
some topology, it does not mean that the inviscid limit doesn’t hold.
The implication only goes the other way around.



Motivation

I Assume Prandtl is locally well-posed in the topology of some
space X . Assume uNS

0 ,u
E
0 ∈ X . Does the inviscid limit hold in L2,

on an O(1) time interval?
I Yes: if X is the space of real-analytic functions.
I Other settings?
I Kato-type results are conditional on the behavior of the

Navier-Stokes solution: Assume assume that uE
0 ∈ X and

uNS ∈ L∞t X . Then the inviscid limit holds in L2 for an O(1) time.
I One-sided conditions à la Oleinik?
I Conditions which do not involve derivatives?



One-sided Kato criterion

Theorem (I. Constantin-Kukavica-V. (’14))
Let Mν be a positive function which obeys∫ T

0
Mν(t)dt → 0 as ν → 0.

Define the boundary layer Γν by

Γν(t) =

{
(x1, x2) ∈ H : 0 < x2 ≤

νt
CE

log
(

CE

Mν(t)

)}
.

Assume that for all ν sufficiently small we have

ν

∫ T

0

∥∥∥∥∥
(

U(x1, t)
(
ωNS(x1, x2, t) +

Mν(t)
ν

))
−

∥∥∥∥∥
2

L2(Γν(t))

dt ≤
∫ T

0
Mν(t)dt

where f− = min{f ,0}. Then the inviscid limit holds.



I Our result states that:
I if there is no back-flow in the Euler background, i.e. UE ≥ 0, (which

persists for O(1) time)
I and the part of the vorticity which is more negative than o(1)ν−1,

i.e. (ωNS +o(1)ν−1)− in a log-Kato layer, is under control (à la Kato)
I then the inviscid limit holds.

I Condition is strictly weaker than Kato’s.
I Cannot expect the Navier-Stokes vorticity to remain of a definite

sign, as the Prandtl one does.
I Result works in bounded domains with smooth boundaries.
I Condition is satisfied e.g. by viscous shear flow.



Theorem (II. Constantin-Elgindi-Ignatova-V. (’15))
Assume that there exists a constant CNS > 0 such that

sup
ν∈(0,ν0]

∫ T

0
‖uNS(t)‖2

L∞(H)dt ≤ CNSν0

and moreover that the family

{uNS
1 uNS

2 }ν∈(0,ν0] is equicontinuous at x2 = 0.

Then the inviscid limit holds in the energy norm.

I The equicontinuity condition is that there exists a function

0 ≤ γ(x1, t) ∈ L1
t,x1

([0,T ]× R)

so that for any ε > 0, there exists ρ = ρ(ε) > 0 such that

|uNS
1 (x1, x2, t)uNS

2 (x1, x2, t)| ≤ εγ(x1, t), for all x2 ∈ (0, ρ],

and all (t , x1) ∈ [0,T ]× R, uniformly in ν ∈ (0, ν0].
I This condition implies that Lagrangian paths originating in a

boundary layer do not reach in finite time beyond a fixed uniform
dilate of the boundary layer. Before separation!



Theorem (III. Constantin-Elgindi-Ignatova-V. (’15))
Assume

sup
ν∈(0,ν0]

∫ T

0
‖uNS(t)‖2

L∞(H)dt ≤ CNSν0

and that the tangential component of the Navier-Stokes flow obeys

sup
ν∈(0,ν0]

∫ T

0
‖∂1uNS

1 (t)‖2
L1(H)dt ≤ CNSν0

for some constant CNS > 0, and that the family

{∂1uNS
1 }ν∈(0,ν0] is uniformly integrable in L2(0,T ; L1(H)),

Then the inviscid limit holds.

I By the last condition we mean that given an arbitrary ε > 0, there
exists η = η(ε) > 0 such that∫ T

0
‖∂1uNS

1 (t)‖2
L1(Ω)dt ≤ ε

whenever the subset Ω ⊂ H obeys |Ω| ≤ δ.



I Note that ∂1uNS
1 vanishes identically on ∂H, which is not the case

for the Navier-Stokes vorticity ωNS = ∂2uNS
1 − ∂1uNS

2 , which is
expected to have a measure supported on the boundary of the
domain in the inviscid limit Kelliher ’(08). Thus, the vorticity is not
expected to be uniformly integrable in L2

t L1
x .

I Also, note that (uniform in ν) higher integrability of the
Navier-Stokes vorticity, such as Lp for p > 2 cannot hold unless
UE ≡ 0, as is shown in Kelliher (’14).



Open problem

Removing the equicontinuity assumption on uNS
1 uNS

2 at the boundary of
the domain is an interesting question:
Q: assuming merely

sup
ν∈(0,ν0]

∫ T

0
‖uNS(t)‖2

L∞(H)dt ≤ CNSν0

does the inviscid limit hold?



Sketch of proof of Theorems II. and III. The Setup.
I Start like Kato: construct a boundary layer corrector such that

∇ · uK = 0
uK

1|∂H = −UE

uK
2|∂H = 0

I The corrector will have a characteristic length δ(νt), by which we
mean that the following bounds hold:

‖uK‖Lp(H) + ‖∂tuK‖Lp(H) + ‖∂1uK‖Lp(H) + ‖∂11uK‖Lp(H) ≤ CEδ(νt)1/p

‖∂2uK
1‖Lp(H) ≤ CEδ(νt)−1+1/p

‖∂1uK
2‖Lp(H) ≤ CEδ(νt)

for all 1 ≤ p ≤ ∞.
I Then the function

v = uNS − uE − uK

obeys ∇ · v = 0 and v |∂H = 0, so it is amenable to L2 energy
estimates, and

lim
ν→0

sup
t∈[0,T ]

‖v(t)‖L2 = 0 ⇔ lim
ν→0

sup
t∈[0,T ]

‖uNS(t)− uE(t)‖L2 = 0



Equation for v and the Prandtl equations
I The equation obeyed by v is

∂tv − ν∆v + v · ∇uE + uNS · ∇v +∇q
= ν∆uE − (∂tuK − ν∆uK + uNS · ∇uK + uK · ∇uE)

I The Prandtl equations’ goal is to solve

∂tuP
1 − ν∂yy uP

1 + (uP + uE) · ∇uP
1 + uP · ∇uE

1 = 0

uP
2 = −∂x∂

−1
y uK

1

so that in the tangential component we one is left with

∂tv − ν∆v + v · ∇uE + uNS · ∇v +∇q = ν∆uE − v · ∇uP
1 − small

I However, the resulting term∫
H

v2∂2uP
1v1 =

1√
ν

∫
H

v2∂Y uP
1v1

≤ 1√
ν
‖∂Y uP

1‖L∞‖v‖2
L2 or ≤

√
ν‖∂Y uP

1‖L∞‖∇v‖2
L2

is not under control: need higher order correctors



Equation for v and resulting errors
I The equation obeyed by v is

∂tv − ν∆v + v · ∇uE + uNS · ∇v +∇q
= ν∆uE − (∂tuK − ν∆uK + uNS · ∇uK + uK · ∇uE)

I Multiply by v and integrate by parts

1
2

d
dt
‖v‖2

L2 + ν‖∇v‖2
L2 ≤ CE‖v‖2

L2 + νCE‖v‖L2 + T1 + . . .+ T6

where we have denoted

T1 = −
∫
H

(∂tuK − ν∆uK) · v

T2 + T3 = −
∫
H

(uNS · ∇uE) · uK −
∫
H

(uK · ∇uE) · v

T4 = −
∫
H

uNS
1 uNS

2 ∂1uK
2

T5 = −
∫
H

(
(uNS

1 )2 − (uNS
2 )2) ∂1uK

1

T6 = −
∫
H

uNS
1 uNS

2 ∂2uK
1



Construction of the corrector uK

I Eliminate the contribution from T1 to leading order in ν:

uK
1(x1, x2, t) = −UE(x1, t)

(
erfc

(
x2√
4νt

)
−
√

4νt η(x2)

)
uK

2(x1, x2, t) = −
∫ x2

0
∂1uK

1(x1, y , t)dy

where η is a positive bump, of mass 1/
√
π, approximating χ[1,2],

and erfc(z) = 1− erf(z) = 2√
π

∫∞
z exp(−y2)dy .

I Note: essential that uK
1 has zero mean in x2.

I This has the characteristic length of the Prandtl layer

δ(νt) =
√
νt



Bounding T5

I Assuming an L2
t L∞x bound on uNS, we may estimate∫ T

0
|T5(t)|dt ≤

∫ T

0

∫
H

∣∣((uNS
1 )2 − (uNS

2 )2) ∂1uK
1

∣∣
≤ ‖uNS‖2

L2(0,T ;L∞)‖∂1uK
1‖L∞(0,T ;L1)

≤ (CNSν0)2CE(νT )1/2

I For this term a weaker assumption would have been OK:

uNS uniformly bounded in L1(0,T ; L2
x1

Lp
x2 (H))

for any p > 2.



Bounding T6
I We estimate

|T6(t)| ≤ CE(νt)1/2 + C|T6,ν(t)|

where∫ T

0
|T6,ν(t)|dt

=

∫ T

0

∫
H

∣∣∣uNS
1 (x1,

√
4νty , t)uNS

2 (x1,
√

4νty , t)
∣∣∣ |UE(x1, t)|exp(−y2)dx1dydt

I The measure

µx1,y,t = ‖UE(x1, ·)‖L∞([0,T ]) exp(−y2)dx1dydt

gives bounded mass to [0,T ]×H.
I If

∫ T
0 supν ‖uNS(t)‖2

L∞dt <∞, may conclude by DCT if we knew

uNS
1 (x1,

√
4νty , t)uNS

2 (x1,
√

4νty , t)→ 0 as ν → 0

pointwise(!) in (x1, y , t).



T6 bound in Theorem II.
I Assume equicontinuity at x2 = 0 of the family uNS

1 uNS
2 .

I Given ε > 0, let ρ(ε) > 0 be such that: [def of equicontinuity].∫ T

0
|T6,ν(t)|dt (split into y ≥ ρ√

4νt
and y ≤ ρ√

4νt
)

≤ ‖UE‖L∞(0,T ;L1
x1

(R))

∫ T

0
‖uNS(t)‖2

L∞
x1,x2

(H)

(∫
y≥ ρ√

4νt

exp(−y2)dy

)
dt

+ ‖UE‖L∞(0,T ;L∞
x1

(R))

∫ T

0

∫
y≤ ρ√

4νt

ε γ(x1, t) exp(−y2)dx1dydt

≤ CECNSν0 erfc
(

ρ√
4νT

)
+ εCE‖γ‖L1(0,T ;L1(R+))

I Passing ν → 0 with ρ(ε) and T are fixed, and erfc(z)→ 0 as
z →∞, we arrive at

lim
ν→0

∫ T

0
|T6,ν(t)|dt ≤ ε‖UE‖L∞(0,T ;L∞(R))‖γ‖L1(0,T ;L1(R+)).

I Recall γ is independent of ε, and ε > 0 is arbitrary.



T6 bound in Theorem III.
I Assuming the uniform boundedness of and uniform integrability

of ∂1uNS
1 in L2(0,T ; L1(H)) we have:∫ T

0
|T6,ν(t)|dt

≤
∫
R+

exp(−y2)

×
∫ T

0

∫
R
‖uNS

1 (t)‖L∞
x1,x2

(H)

∫ √4νty

0
|∂2uNS

2 (x1, z, t)|dz‖UE(x1)‖L∞
t [0,T ]dx1dtdy

≤ ‖uNS
1 (t)‖L2(0,T ;L∞(H))

∫
R+

Bν(y) exp(−y2)dy

where

(Bν(y))2 =

∫ T

0

(∫
H
|∂1uNS

1 (x1, z, t)|‖UE(x1)‖L∞([0,T ])1z≤
√

4νTy dzdx1

)2

dt

I Pointwise, we have

Bν(y) ≤ ‖UE‖L∞(0,T ;L∞(R))‖∂1uNS
1 ‖L2(0,T ;L1

x1,z
(H))

≤ CECNSν0 ∈ L1(exp(−y2)dy).



T6 bound in Theorem III.
I In order to apply DCT and conclude that

lim
ν→0

∫
R+

Bν(y) exp(−y2)dy = 0

we need to show that for each fixed y > 0 we have

lim
ν→0

Bν(y) = 0.

I Fix ε > 0, and pick the η = η(ε/2CE) given by uniform
integrability.

I For R > 0, define the level set

AR = {x1 ∈ R : ‖UE(x1)‖L∞[0,T ] ≤ R}.
I If R is sufficiently small (depending on ε) we use

‖∂1uNS
1 (x1, z, t)1z≤

√
4νTy‖U

E(x1)‖L∞[0,T ]‖L2(0,T ;L1
x1,z

(AR×R+)) ≤ RCNSν0CE

I On the other hand, |Ac
R | ≤

CE
R so that

|Ω| = |Ac
R × {z : 0 < z ≤

√
4νTy}| ≤ CE

R

√
4νTy ≤ η(ε/2CE)

if we choose ν sufficiently small (depending on y and ε).



Van Dommelen and Shen (’80) - Prandtl separation

I Consider a non-trivial stationary Euler flow at infinity (i.e.
non-constant, or at least constant not 0)

UE(x) = κ sin(x)

−∂xPE(x) =
κ2

2
sin(2x)

where κ ∈ R is a parameter, and x ∈ [−π, π].
I These are stationary solutions of the Bernoulli equation

∂tUE + UE∂xUE = −∂xPE.

I Consider the Prandtl equations with these boundary conditions.
I Conjecture: Based on numerical experiments, the Prandtl

solution cannot remain smooth for all time, i.e. they blow up in
finite time.
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t-o t-4 

FIG. I. The distortion of a typical Lagrangian grid with time 

do blow up, but in the Lagrangian description those balancing large terms are 
replaced by a single time derivative. Therefore, as will be substantiated by the 
numerical results to be presented, the solution is better behaved in Lagrangian coor- 
dinates than in Eulerian ones. 

The present work extends the earlier work by van Dommelen and Shen ] 131, in 
which the same case as presented here was calculated, but with different initial data, 

u(x, y, 0) =f(y) sin x, (5) 

where f(y) is the Hiemenz velocity profile [ 11, instead of the step function initial 
data of Eq. (3). From [ 131 we borrow Fig. 1, as it gives a beautiful picture of how the 
Lagrangian grid distorts with time and consequently, like a geometrical mapping, 

Figure: The distortion of a typical Lagrangian grid with time.
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FIG. 11. The variation of the displacement thickness with x, for various instants, 

TABLE II 

Computed Values of Several Variables for Various Gridsizes 

Gridsize 19 x 9 37x 17 73 x 33 145 x 65 

s at min(lgrad xi) for T= 1.5 2.002 1.954 1.943 1.939 

u at min(lgrad.ui) for T= 1.5 -.3 17 -.298 -.276 p.274 

T at separation 1.659 1.553 1.515 1.506 

T for zero wall shear at .Y = R -1’ .3264 .3231 .3220 

F” for x = E and T = 1.5 /I 

i i (-) indicates no value was determined. 

1.130 1.1 125 1.1122 

Indeed all calculations prior to the present one suffer from insufficient resolution in 
the x-direction to adequately resolve for the singularity. The present solution, 
however, has infinite resolution at the singularity because x is stationary.) 

One might be tempted to suppose that the differences between our and Cebeci’s 
solution, Figs. 8 and 9, are due to his insufficient resolution in x-direction. However, 

Figure: The variation of the displacement thickness δ∗(t , x) for various times.

δ∗(t , x) =

∫ ∞
0

(
1− uP

1(x , y , t)
UE(x , t)

)



Blowup in Prandtl?

I The “numerical blowup” seen by van Dommelen and Shen was
reconfirmed by several groups, on finer computers with more
sophisticated methods:

I Cassel-Smith-Walker (’96)
I Hong-Hunter (’03)
I Gargano-Sammartino-Sciacca (’09)
I Caflisch-Gargano-Sammartino-Sciacca (’15)

I Goal: a mathematically rigorous proof?
I E-Engquist (’01): consider κ = 0, and datum that is compactly

supported in y , which is large (just about to blow up), and show
that it does indeed blow up in finite time.

I Proof by contradiction: either smoothness or decay towards 0 as
y →∞ fails. Local existence in this class missing at the time.

I Caflisch-Gargano-Sammartino-Sciacca (’15): at the level of
numerical simulations, the complex structure of the κ = 0 blowup
is of different type from the κ 6= 0 singularity.

I Dalibard-Masmoudi (’14): proof of separation in a steady flow.



Theorem (IV. Kukavica-V.-Wang (’15))
Consider the Cauchy problem for the Prandtl equations with
boundary conditions at y =∞ matching the van Dommelen-Shen
scenario. There exists an open set of initial conditions uP

0 which are
real-analytic in x and y, such that the unique real-analytic solution uP

to the Prandtl equations, blows up in finite time.

I Who blows up?

G(t) =

∫ ∞
0

(κϕ(t , y)− ∂xuP
1(t ,0, y))w(y)dy

where ϕ(t , y) is a suitable caloric lift of the boundary conditions,
and w(y) is a suitable integrable weight.

I This is approximatively: the displacement thickness

κδ∗(t ,0) = lim
x→0

∫ ∞
0

(
κ− uP(t , x , y)

sin(x)

)
dy =

∫ ∞
0

(κ− ∂xuP(t ,0, y)) dy



Remarks
Inviscid limit

I Local in time inviscid limit holds for these initial conditions
Sammartino-Caflisch (’98)

I We prove that the Prandtl expansion approach to the inviscid
limit should only be expected to hold on finite time intervals.

More general Euler flows
I The proof holds if UE (x) = κ sin(x) is replaced by any odd

function of x , upon letting PE (x) = −(UE (x))2/2.
More general initial conditions

I The analyticity of the initial datum is only used to ensure the local
existence and uniqueness of (sufficiently) strong solutions.

I Instead, we may pick any initial datum which is matches the
κ sin(x) at y =∞, and for which the Prandtl system is locally
well-posed.

Size of the datum: needs to be sufficiently large, depending on κ.
I Ignatova-V. (’15): ε-small analytic perturbations of the error

function solve Prandtl for [0,Tε], where Tε ≥ exp(ε−1/ log(ε−1)).



Sketch of proof of Theorem IV

I Consider datum which is smooth and odd with respect to x .
I The unique smooth solution obeys the same symmetry, and thus

u(t ,0, y) = ∂y u(t ,0, y) = ∂xxu(t ,0, y) = 0.

I Restrict dynamics to the x-axis, where the Lagrangian
trajectories are frozen, and the vorticity is vanishing identically.

I The function
b(t , y) = (−∂xu)(t ,0, y)

obeys

∂tb − ∂yy b = b2 − ∂−1
y b ∂y b − κ2

b|y=0 = 0, b|y=∞ = −κ.

I Do not like: b doesn’t have a definite sign; there is a competition
between b2 and −κ2 on the RHS.



Sketch of proof of Theorem IV (cont’d)
I Lift the function b “up” by an artificial corrector

a(t , y) = b(t , y) + ϕ(t , y)

where

∂tϕ− ∂yyϕ = κ2

ϕ|y=0 = 0, ϕ|y=∞ = κ+ κ2t
ϕ|t=0 = κErf(y/2).

so that a(t , y) obeys

∂ta− ∂yy a = a2 − ∂−1
y a ∂y a + Lϕ[a] + Fϕ

a|y=0 = 0, a|y=∞ = κ2t ≥ 0

Lϕ[a] = −2aϕ+ ∂−1
y a ∂yϕ+ ∂−1

y ϕ∂y a

Fϕ = ϕ2 − ∂−1
y ϕ∂yϕ ≥ 0.

I The upshot: minimum principle for a

a0(y) ≥ 0⇒ a(t , y) ≥ 0.



Sketch of proof of Theorem IV (cont’d)
I Define a Lyapunov functional

G(t) =

∫ ∞
0

a(t , y)w(y)dy

where w is a non-negative weight, with w ∈ L1 ∩W 2,∞, and
w(y = 0) = w(y =∞) = 0.

I Then, by choosing w very carefully, we may prove

dG
dt

=

∫
a∂yy w + 2

∫
a2w − 1

2

∫
(∂−1

y a)2∂yy w +

∫
Lϕ[a]w +

∫
Fw

≥ 1
c∗
G2 − c∗(1 + t)G

for some c∗ = c∗(κ,w) > 0.
I To conclude, choose

G0 ≥ 4c2
∗

and obtain the finite time blowup of G(t).
I For example, let A� 1, and define

u0(x , y) = (κErf(y/2)− a0(y)) sin(x), a0(y) = Ay2 exp(−y2).


