# Remarks on the vanishing viscosity problem with Dirichlet boundary conditions 

Vlad Vicol

Princeton University

Boundary layers and fluid-structure interaction, Bordeaux, January 11, 2016


## The Euler and Navier-Stokes equations

- Incompressible Navier-Stokes

$$
\partial_{t} u^{N S}+u^{\mathrm{NS}} \cdot \nabla u^{\mathrm{NS}}-\nu \Delta u^{\mathrm{NS}}+\nabla p^{N S}=0, \quad \nabla \cdot u^{N \mathrm{~S}}=0,
$$

- Incompressible Euler

$$
\partial_{t} u^{\mathrm{E}}+u^{\mathrm{E}} \cdot \nabla u^{\mathrm{E}}+\nabla p^{\mathrm{E}}=0, \quad \nabla \cdot u^{\mathrm{E}}=0 .
$$

- Boundary conditions: Dirichlet for Navier-Stokes

$$
u_{\mid \partial \Omega}^{N S}=0,
$$

and non-penetrating for Euler

$$
u_{\mid \partial \Omega}^{\mathrm{E}} \cdot n=0 .
$$

## The question of inviscid limit

- Initial conditions are asymptotically the same:

$$
\left\|u_{0}^{\mathrm{NS}}-u_{0}^{\mathrm{E}}\right\|_{L^{2}} \rightarrow 0 \quad \text { as } \quad \nu \rightarrow 0
$$

- Finite time horizon: fix $T>0$.
- For simplicity, fix: $d=2$ and $\Omega=\mathbb{H}$.
- Navier-Stokes energy inequality:

$$
\left\|u^{N S}(t)\right\|_{L^{2}}^{2}+2 \nu \int_{0}^{t}\left\|\nabla u^{N S}(s)\right\|_{L^{2}}^{2} d s \leq\left\|u_{0}^{N S}\right\|_{L^{2}}^{2} .
$$

- Space of convergence: the energy space $L^{\infty}\left(0, T ; L^{2}(\mathbb{H})\right)$.
- The problem:

$$
\sup _{t \in[0, T]}\left\|u^{\text {NS }}(t)-u^{\mathrm{E}}(t)\right\|_{L^{2}} \rightarrow 0 \quad \text { as } \quad \nu \rightarrow 0 \quad ? ? ?
$$

- Smooth background Euler solution: $u_{0}^{\mathrm{E}} \in H^{s}(\mathbb{H})$, for some $s>2$.
- $C_{E}$ is any constant that depends on $\left\|u^{\mathrm{E}}\right\|_{L^{\infty}\left(0, T ; H^{s}(\mathbb{H})\right)}$.


## Kato ('84) and friends

- Kato ('84): the inviscid limit holds if and only if

$$
\lim _{\nu \rightarrow 0} \nu \int_{0}^{T} \int_{x_{2} \leq O(\nu)}\left|\nabla u^{\text {NS }}(x, t)\right|^{2} d x d t=0
$$

- Temam-Wang ('98), and Wang ('01):
only tangential gradients, but thicker layer $\delta(\nu): \lim _{\nu \rightarrow 0} \frac{\delta(\nu)}{\nu}=0$.
- Kelliher ('08): inviscid limit holds if and only if

$$
\omega^{\mathrm{NS}} \rightarrow \omega^{\mathrm{E}}-u_{1}^{\mathrm{E}} \mu_{\partial \mathbb{H}} \quad \text { in } \quad\left(H^{1}(\mathbb{H})\right)^{*}
$$

- Bardos-Titi ('15): inviscid limit holds if and only if

$$
\nu \omega^{\mathrm{Ns}} \rightharpoonup 0 \quad \text { in } \quad D^{\prime}([0, T], \partial \mathbb{H})
$$

## Further "positive" results on the inviscid limit

- Masmoudi ('98): inviscid limit holds if $-\nu \Delta$ is replaced by anisotropic viscosity $-\nu_{1} \partial_{y y}-\nu_{2} \partial_{x x}$, with $\nu_{1} / \nu_{2} \rightarrow 0$
- Lopes Filho-Mazzucato-Nussenzveig Lopes-Taylor ('08): vanishing viscosity limits holds for circularly symmetric 2D flows on a rotating boundary
- similar positive results in other symmetric geometries: Iftimie-Lopes Filho-Nussenzveig Lopes ('03), Lopes Filho-Kelliher-Nussenzveig Lopes ('09); Mazzucato, Taylor ('11);
- Guo-Nguyen ('15): inviscid limit holds for a steady moving plate
- Bardos-Szekelyhidi-Wiedemann ('14): weak-strong uniqueness if Hölder near the boundary
- Bardos-Nguyen ('14): Kato-type results for compressible fluids


## Inviscid limit holds if the Prandtl expansion is valid

Theorems(!): if the initial datum obeys [...] then inviscid limit holds.

- Sammartino-Caflisch ('98): inviscid limit holds if the initial datum is real analytic in all variables.
- Maekawa ('14): inviscid limit holds if the initial vorticity is identically vanishing near $\partial \mathbb{H}$.


## Asymptotic Expansions in the inviscid limit: Prandt|

- In the BL: $\left.u_{1}^{\text {NS }}\right|_{y=0}$ has to jump from 0 to $\left.u_{1}^{E}\right|_{y=0}=\mathcal{O}(1)$.
- In the BL: dominating viscous term $\nu \partial_{y y} u_{1}^{\text {Ns }}=\mathcal{O}(1)$, so that the thickness of the BL should be

$$
\varepsilon=\sqrt{\nu}
$$

- For $\nu \ll 1$, it is natural to consider the asymptotic expansion

$$
u^{\mathrm{Ns}}=u^{(\mathrm{Ns}, 0)}+\varepsilon u^{(\mathrm{Ns}, 1)}+\varepsilon^{2} u^{(\mathrm{Ns}, 2)}+\ldots
$$

where as before $\varepsilon=\sqrt{\nu}$

- outside of the BL: $u^{(\mathrm{Ns}, 0)} \approx u^{\mathrm{E}}$
- inside the BL: $u^{(\mathrm{ss}, 0)} \approx u^{\mathrm{P}}$
- let $Y=y / \varepsilon$ be the boundary layer variable
- Prandtl plugs in the ansatz:

$$
u^{(\mathrm{Ns}, 0)}(x, y) \approx\left(u_{1}^{\mathrm{P}}(x, Y), \varepsilon u_{2}^{\mathrm{P}}(x, Y)\right)
$$

in the Navier-Stokes equations, and formally sends $\varepsilon$ to 0

## The Prandtl boundary layer equations

- In the limit we obtain the Prandtl boundary layer equations:

$$
\begin{aligned}
& \partial_{t} u_{1}^{\mathrm{P}}-\partial_{Y Y} u_{1}^{\mathrm{P}}+u_{1}^{\mathrm{P}} \partial_{X} u_{1}^{\mathrm{P}}+u_{2}^{\mathrm{P}} \partial_{Y} u_{1}^{\mathrm{P}}+\partial_{X} p^{\mathrm{P}}=0 \\
& \partial_{Y} p^{\mathrm{P}}=0 \\
& \partial_{X} u_{1}^{\mathrm{P}}+\partial_{Y} u_{2}^{\mathrm{P}}=0
\end{aligned}
$$

- Boundary conditions

$$
\begin{aligned}
& \lim _{Y \rightarrow \infty} u_{1}^{\mathrm{P}}=u_{1}^{\mathrm{E}}(y=0)=U^{\mathrm{E}} \\
& \lim _{Y \rightarrow \infty} p^{P}=p^{\mathrm{E}}(y=0)=P^{\mathrm{E}} \\
& u_{1}^{\mathrm{P}}(Y=0)=u_{2}^{\mathrm{P}}(Y=0)=0
\end{aligned}
$$

- Where $U^{E}$ and $P^{E}$ obey the Bernoulli equations

$$
\partial_{t} U^{\mathrm{E}}+U^{\mathrm{E}} \partial_{x} U^{\mathrm{E}}=-\partial_{x} P^{\mathrm{E}}
$$

## Mathematical issues for the Prandtl equations

Well-posedness in suitable functional spaces:

- 2D Local existence. Monotonic in y datum.
- Oleinik ('66): Crocco transform. Strong solutions.
- Xin and Zhang ('04): Weak solutions for pressure of fixed sign.
- Masmoudi-Wong ('12): energy methods + magic cancellation: the function $g=\partial_{y} u-u \partial_{y} \log \left(\partial_{y} u\right)$ obeys better bounds than $u$ or $\partial_{y} u$.
- In a similar spirit: Alexandre-Wang-Xu-Yang ('14).
- 2D\&3D Local Existence. Analytic datum.
- Caflisch and Sammartino ('98-Part I): analyticity w.r.t. both $x$ and $y$, exponential decay in $y$.
- Cannone-Lombardo-Sammartino ('03): analyticity w.r.t. only $x$, exponential decay in $y$.
- Kukavica-V. ('12): energy method; analyticity w.r.t. only $x$, any integrable decay in $y$.
- Local existence for non-analytic datum with critical points.
- Gerard-Varet-Masmoudi ('13): Gevrey 7/4 initial datum with finitely many non-degenerate critical points, exponential decay in $y$.
- Kukavica-Masmoudi-V.-Wong ('14): interplay between monotonicity in $y$ an analyticity in $x$.
- Xu-Zhang ('15): Sobolev initial datum which is close to a shear flow with non-degenerate critical points, algebraic decay in $y$.


## Mathematical issues for the Prandtl equations

## III-posedness:

- Sobolev ill-posedness: Grenier ('00), Gerard-Varet and Dormy ('09), Gerard-Varet and Nguyen ('12); Guo and Nguyen ('12)
Justify the formal derivation of the Prandtl equations in the inviscid limit, i.e. prove that

$$
u^{\mathrm{NS}}=u^{\mathrm{E}}\left(1-\chi_{B L}\right)+u^{P} \chi_{B L}+\mathcal{O}(\varepsilon)
$$

- Sammartino and Caflisch ('98-Part II): positive results in the real-analytic case
- Grenier('00); Guo-Nguyen ('12); Grenier-Guo-Nguyen ('13-'14): negative results in Sobolev spaces
Note: just because Prandtl is ill-posed (aka. strongly unstable) in some topology, it does not mean that the inviscid limit doesn't hold. The implication only goes the other way around.


## Motivation

- Assume Prandtl is locally well-posed in the topology of some space $X$. Assume $u_{0}^{\text {NS }}, u_{0}^{\mathrm{E}} \in X$. Does the inviscid limit hold in $L^{2}$, on an $O(1)$ time interval?
- Yes: if $X$ is the space of real-analytic functions.
- Other settings?
- Kato-type results are conditional on the behavior of the Navier-Stokes solution: Assume assume that $u_{0}^{\mathrm{E}} \in X$ and $u^{\mathrm{Ns}} \in L_{t}^{\infty} X$. Then the inviscid limit holds in $L^{2}$ for an $O(1)$ time.
- One-sided conditions à la Oleinik?
- Conditions which do not involve derivatives?


## One-sided Kato criterion

## Theorem (I. Constantin-Kukavica-V. ('14))

Let $M_{\nu}$ be a positive function which obeys

$$
\int_{0}^{T} M_{\nu}(t) d t \rightarrow 0 \quad \text { as } \quad \nu \rightarrow 0
$$

Define the boundary layer $\Gamma_{\nu}$ by

$$
\Gamma_{\nu}(t)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{H}: 0<x_{2} \leq \frac{\nu t}{C_{E}} \log \left(\frac{C_{E}}{M_{\nu}(t)}\right)\right\} .
$$

Assume that for all $\nu$ sufficiently small we have
$\nu \int_{0}^{T}\left\|\left(U\left(x_{1}, t\right)\left(\omega^{N S}\left(x_{1}, x_{2}, t\right)+\frac{M_{\nu}(t)}{\nu}\right)\right)_{-}\right\|_{L^{2}\left(\Gamma_{\nu}(t)\right)}^{2} d t \leq \int_{0}^{T} M_{\nu}(t) d t$
where $f_{-}=\min \{f, 0\}$. Then the inviscid limit holds.

- Our result states that:
- if there is no back-flow in the Euler background, i.e. $U^{E} \geq 0$, (which persists for $O(1)$ time)
- and the part of the vorticity which is more negative than $o(1) \nu^{-1}$, i.e. $\left(\omega^{N S}+o(1) \nu^{-1}\right)$ - in a log-Kato layer, is under control (à la Kato)
- then the inviscid limit holds.
- Condition is strictly weaker than Kato's.
- Cannot expect the Navier-Stokes vorticity to remain of a definite sign, as the Prandtl one does.
- Result works in bounded domains with smooth boundaries.
- Condition is satisfied e.g. by viscous shear flow.

Theorem (II. Constantin-Elgindi-Ignatova-V. ('15))
Assume that there exists a constant $C_{N s}>0$ such that

$$
\sup _{\nu \in\left(0, \nu_{0}\right]} \int_{0}^{T}\left\|u^{N s}(t)\right\|_{L \infty(\mathbb{H})}^{2} d t \leq C_{N s} \nu_{0}
$$

and moreover that the family

$$
\left\{u_{1}^{N S} u_{2}^{N_{S}}\right\}_{\nu \in\left(0, \nu_{0}\right]} \text { is equicontinuous at } x_{2}=0 \text {. }
$$

Then the inviscid limit holds in the energy norm.

- The equicontinuity condition is that there exists a function

$$
0 \leq \gamma\left(x_{1}, t\right) \in L_{t, x_{1}}^{1}([0, T] \times \mathbb{R})
$$

so that for any $\varepsilon>0$, there exists $\rho=\rho(\varepsilon)>0$ such that

$$
\left|u_{1}^{\text {NS }}\left(x_{1}, x_{2}, t\right) u_{2}^{\mathrm{NS}}\left(x_{1}, x_{2}, t\right)\right| \leq \varepsilon \gamma\left(x_{1}, t\right), \quad \text { for all } \quad x_{2} \in(0, \rho],
$$

and all $\left(t, x_{1}\right) \in[0, T] \times \mathbb{R}$, uniformly in $\nu \in\left(0, \nu_{0}\right]$.

- This condition implies that Lagrangian paths originating in a boundary layer do not reach in finite time beyond a fixed uniform dilate of the boundary layer. Before separation!


## Theorem (III. Constantin-Elgindi-Ignatova-V. ('15))

Assume

$$
\sup _{\nu \in\left(0, \nu_{0}\right]} \int_{0}^{T}\left\|u^{N S}(t)\right\|_{L^{\infty}(\mathbb{H})}^{2} d t \leq C_{N S} \nu_{0}
$$

and that the tangential component of the Navier-Stokes flow obeys

$$
\sup _{\nu \in\left(0, \nu_{0}\right]} \int_{0}^{T}\left\|\partial_{1} u_{1}^{N S}(t)\right\|_{L^{1}(\mathbb{H})}^{2} d t \leq C_{N S} \nu_{0}
$$

for some constant $C_{N s}>0$, and that the family

$$
\left\{\partial_{1} u_{1}^{N S}\right\}_{\nu \in\left(0, \nu_{0}\right]} \quad \text { is uniformly integrable in } \quad L^{2}\left(0, T ; L^{1}(\mathbb{H})\right) \text {, }
$$

Then the inviscid limit holds.

- By the last condition we mean that given an arbitrary $\varepsilon>0$, there exists $\eta=\eta(\varepsilon)>0$ such that

$$
\int_{0}^{T}\left\|\partial_{1} u_{1}^{\mathrm{NS}}(t)\right\|_{L^{1}(\Omega)}^{2} d t \leq \varepsilon
$$

whenever the subset $\Omega \subset \mathbb{H}$ obeys $|\Omega| \leq \delta$.

- Note that $\partial_{1} u_{1}^{\text {NS }}$ vanishes identically on $\partial \mathbb{H}$, which is not the case for the Navier-Stokes vorticity $\omega^{\text {NS }}=\partial_{2} u_{1}^{\text {NS }}-\partial_{1} u_{2}^{\text {NS }}$, which is expected to have a measure supported on the boundary of the domain in the inviscid limit Kelliher '(08). Thus, the vorticity is not expected to be uniformly integrable in $L_{t}^{2} L_{x}^{1}$.
- Also, note that (uniform in $\nu$ ) higher integrability of the Navier-Stokes vorticity, such as $L^{p}$ for $p>2$ cannot hold unless $U^{\mathbb{E}} \equiv 0$, as is shown in Kelliher ('14).


## Open problem

Removing the equicontinuity assumption on $u_{1}^{\mathrm{NS}} u_{2}^{\mathrm{NS}}$ at the boundary of the domain is an interesting question:
Q: assuming merely

$$
\sup _{\nu \in\left(0, \nu_{0}\right]} \int_{0}^{T}\left\|u^{\mathrm{NS}}(t)\right\|_{L^{\infty}(\mathbb{H})}^{2} d t \leq C_{\mathrm{NS}} \nu_{0}
$$

does the inviscid limit hold?

## Sketch of proof of Theorems II. and III. The Setup.

- Start like Kato: construct a boundary layer corrector such that

$$
\begin{aligned}
& \nabla \cdot u^{K}=0 \\
& \left.u_{1}^{K}\right|_{\partial H}=-U^{E} \\
& \left.u_{2}^{K}\right|_{\partial H}=0
\end{aligned}
$$

- The corrector will have a characteristic length $\delta(\nu t)$, by which we mean that the following bounds hold:

$$
\begin{aligned}
& \left\|u^{k}\right\|_{L^{p}(\mathbb{H})}+\left\|\partial_{t} u^{K}\right\|_{L^{p}(\mathbb{H})}+\left\|\partial_{1} u^{k}\right\|_{L^{p}(\mathbb{H})}+\left\|\partial_{11} u^{k}\right\|_{L^{p}(\mathbb{H})} \leq C_{\mathrm{E}} \delta(\nu t)^{1 / p} \\
& \left\|\partial_{2} u_{1}^{\mathrm{K}}\right\|_{L p(\mathbb{H})} \leq C_{E} \delta(\nu t)^{-1+1 / p} \\
& \left\|\partial_{1} u_{2}^{k}\right\|_{L^{p}(\mathbb{H})} \leq C_{E} \delta(\nu t)
\end{aligned}
$$

for all $1 \leq p \leq \infty$.

- Then the function

$$
v=u^{\mathrm{NS}}-u^{\mathrm{E}}-u^{\mathrm{K}}
$$

obeys $\nabla \cdot v=0$ and $\left.v\right|_{\partial \mathbb{H}}=0$, so it is amenable to $L^{2}$ energy estimates, and

$$
\lim _{\nu \rightarrow 0} \sup _{t \in[0, T]}\|v(t)\|_{L^{2}}=0 \Leftrightarrow \lim _{\nu \rightarrow 0} \sup _{t \in[0, T]}\left\|u^{\text {NS }}(t)-u^{E}(t)\right\|_{L^{2}}=0
$$

## Equation for $v$ and the Prandtl equations

- The equation obeyed by $v$ is

$$
\begin{aligned}
& \partial_{t} v-\nu \Delta v+v \cdot \nabla u^{\mathrm{E}}+u^{\mathrm{NS}} \cdot \nabla v+\nabla q \\
& \quad=\nu \Delta u^{\mathrm{E}}-\left(\partial_{t} u^{\mathrm{K}}-\nu \Delta u^{\mathrm{K}}+u^{\mathrm{NS}} \cdot \nabla u^{\mathrm{K}}+u^{\mathrm{K}} \cdot \nabla u^{\mathrm{E}}\right)
\end{aligned}
$$

- The Prandtl equations' goal is to solve

$$
\begin{aligned}
& \partial_{t} u_{1}^{\mathrm{P}}-\nu \partial_{y y} u_{1}^{\mathrm{P}}+\left(u^{\mathrm{P}}+u^{\mathrm{E}}\right) \cdot \nabla u_{1}^{\mathrm{P}}+u^{\mathrm{P}} \cdot \nabla u_{1}^{\mathrm{E}}=0 \\
& u_{2}^{\mathrm{P}}=-\partial_{x} \partial_{y}^{-1} u_{1}^{\mathrm{K}}
\end{aligned}
$$

so that in the tangential component we one is left with

$$
\partial_{t} v-\nu \Delta v+v \cdot \nabla u^{\mathrm{E}}+u^{\mathrm{Ns}} \cdot \nabla v+\nabla q=\nu \Delta u^{\mathrm{E}}-v \cdot \nabla u_{1}^{\mathrm{P}}-\text { small }
$$

- However, the resulting term

$$
\begin{aligned}
\int_{\mathbb{H}} v_{2} \partial_{2} u_{1}^{\mathrm{p}} v_{1} & =\frac{1}{\sqrt{\nu}} \int_{\mathbb{H}} v_{2} \partial_{Y} u_{1}^{\mathrm{P}} v_{1} \\
& \leq \frac{1}{\sqrt{\nu}}\left\|\partial_{Y} u_{1}^{\mathrm{P}}\right\|_{L^{\infty}}\|v\|_{L^{2}}^{2} \quad \text { or } \quad \leq \sqrt{\nu}\left\|\partial_{Y} u_{1}^{\mathrm{P}}\right\|_{L^{\infty}}\|\nabla v\|_{L^{2}}^{2}
\end{aligned}
$$

is not under control: need higher order correctors

## Equation for $v$ and resulting errors

- The equation obeyed by $v$ is

$$
\begin{aligned}
& \partial_{t} v-\nu \Delta v+v \cdot \nabla u^{\mathrm{E}}+u^{\mathrm{NS}} \cdot \nabla v+\nabla q \\
& \quad=\nu \Delta u^{\mathrm{E}}-\left(\partial_{t} u^{\mathrm{K}}-\nu \Delta u^{\mathrm{K}}+u^{\text {NS }} \cdot \nabla u^{\mathrm{K}}+u^{\mathrm{K}} \cdot \nabla u^{\mathrm{E}}\right)
\end{aligned}
$$

- Multiply by $v$ and integrate by parts

$$
\frac{1}{2} \frac{d}{d t}\|v\|_{L^{2}}^{2}+\nu\|\nabla v\|_{L^{2}}^{2} \leq C_{\mathrm{E}}\|v\|_{L^{2}}^{2}+\nu C_{\mathrm{E}}\|v\|_{L^{2}}+T_{1}+\ldots+T_{6}
$$

where we have denoted

$$
\begin{aligned}
T_{1} & =-\int_{\mathbb{H}}\left(\partial_{t} u^{\mathrm{K}}-\nu \Delta u^{\mathrm{K}}\right) \cdot v \\
T_{2}+T_{3} & =-\int_{\mathbb{H}}\left(u^{\mathrm{NS}} \cdot \nabla u^{\mathrm{E}}\right) \cdot u^{\mathrm{K}}-\int_{\mathbb{H}}\left(u^{\mathrm{K}} \cdot \nabla u^{\mathrm{E}}\right) \cdot v \\
T_{4} & =-\int_{\mathbb{H}} u_{1}^{\mathrm{NS}} u_{2}^{\mathrm{NS}} \partial_{1} u_{2}^{\mathrm{K}} \\
T_{5} & =-\int_{\mathbb{H}}\left(\left(u_{1}^{\mathrm{NS}}\right)^{2}-\left(u_{2}^{\mathrm{NS}}\right)^{2}\right) \partial_{1} u_{1}^{\mathrm{K}} \\
T_{6} & =-\int_{\mathbb{H}} u_{1}^{\mathrm{NS}} u_{2}^{\mathrm{NS}} \partial_{2} u_{1}^{\mathrm{K}}
\end{aligned}
$$

## Construction of the corrector $u^{k}$

- Eliminate the contribution from $T_{1}$ to leading order in $\nu$ :

$$
\begin{aligned}
& u_{1}^{K}\left(x_{1}, x_{2}, t\right)=-U^{ᄐ}\left(x_{1}, t\right)\left(\operatorname{erfc}\left(\frac{x_{2}}{\sqrt{4 \nu t}}\right)-\sqrt{4 \nu t} \eta\left(x_{2}\right)\right) \\
& u_{2}^{K}\left(x_{1}, x_{2}, t\right)=-\int_{0}^{x_{2}} \partial_{1} u_{1}^{\kappa}\left(x_{1}, y, t\right) d y
\end{aligned}
$$

where $\eta$ is a positive bump, of mass $1 / \sqrt{\pi}$, approximating $\chi_{[1,2]}$, and $\operatorname{erfc}(z)=1-\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} \exp \left(-y^{2}\right) d y$.

- Note: essential that $u_{1}^{k}$ has zero mean in $x_{2}$.
- This has the characteristic length of the Prandtl layer

$$
\delta(\nu t)=\sqrt{\nu t}
$$

## Bounding $T_{5}$

- Assuming an $L_{t}^{2} L_{x}^{\infty}$ bound on $u^{\text {Ns }}$, we may estimate

$$
\begin{aligned}
\int_{0}^{T}\left|T_{5}(t)\right| d t & \leq \int_{0}^{T} \int_{\mathbb{H}}\left|\left(\left(u_{1}^{\text {NS }}\right)^{2}-\left(u_{2}^{\mathrm{NS}}\right)^{2}\right) \partial_{1} u_{1}^{\mathrm{K}}\right| \\
& \leq\left\|u^{\mathrm{S}}\right\|_{L^{2}\left(0, T ; L^{\infty}\right)}^{2}\left\|\partial_{1} u_{1}^{\mathrm{K}}\right\|_{L \infty}\left(0, T ; L^{1}\right) \\
& \leq\left(C_{\mathrm{NS}} \nu_{0}\right)^{2} C_{\mathrm{E}}(\nu T)^{1 / 2}
\end{aligned}
$$

- For this term a weaker assumption would have been OK:

$$
u^{\text {Ns }} \quad \text { uniformly bounded in } L^{1}\left(0, T ; L_{x_{1}}^{2} L_{x_{2}}^{p}(\mathbb{H})\right)
$$

for any $p>2$.

## Bounding $T_{6}$

- We estimate

$$
\left|T_{6}(t)\right| \leq C_{\mathrm{E}}(\nu t)^{1 / 2}+C\left|T_{6, \nu}(t)\right|
$$

where

$$
\begin{aligned}
& \int_{0}^{T}\left|T_{6, \nu}(t)\right| d t \\
& =\int_{0}^{T} \int_{\mathbb{H}}\left|u_{1}^{\mathrm{NS}}\left(x_{1}, \sqrt{4 \nu t} y, t\right) u_{2}^{\mathrm{NS}}\left(x_{1}, \sqrt{4 \nu t} y, t\right)\right|\left|U^{\mathbb{E}}\left(x_{1}, t\right)\right| \exp \left(-y^{2}\right) d x_{1} d y d t
\end{aligned}
$$

- The measure

$$
\mu_{x_{1}, y, t}=\left\|U^{\mathbb{E}}\left(x_{1}, \cdot\right)\right\|_{L^{\infty}([0, T])} \exp \left(-y^{2}\right) d x_{1} d y d t
$$

gives bounded mass to $[0, T] \times \mathbb{H}$.

- If $\int_{0}^{T} \sup _{\nu}\left\|U^{\text {NS }}(t)\right\|_{L^{\infty}}^{2} d t<\infty$, may conclude by DCT if we knew

$$
u_{1}^{\text {NS }}\left(x_{1}, \sqrt{4 \nu t} y, t\right) u_{2}^{N \mathrm{~S}}\left(x_{1}, \sqrt{4 \nu t} y, t\right) \rightarrow 0 \quad \text { as } \quad \nu \rightarrow 0
$$

pointwise(!) in $\left(x_{1}, y, t\right)$.

## $T_{6}$ bound in Theorem II.

- Assume equicontinuity at $x_{2}=0$ of the family $u_{1}^{\text {NS }} u_{2}^{\text {NS }}$.
- Given $\varepsilon>0$, let $\rho(\varepsilon)>0$ be such that: [def of equicontinuity].

$$
\begin{aligned}
& \left.\int_{0}^{T}\left|T_{6, \nu}(t)\right| d t \quad \text { (split into } y \geq \frac{\rho}{\sqrt{4 \nu t}} \text { and } y \leq \frac{\rho}{\sqrt{4 \nu t}}\right) \\
& \left.\leq\left\|U^{E}\right\|_{L^{\infty}\left(0, T ; L_{x_{1}}\right.}(\mathbb{R})\right) \int_{0}^{T}\left\|u^{N S}(t)\right\|_{L_{x_{1}, x_{2}}^{\infty}(\mathbb{H})}^{2}\left(\int_{y \geq \frac{\rho}{\sqrt{4 \nu t}}} \exp \left(-y^{2}\right) d y\right) d t \\
& \quad+\left\|U^{E}\right\|_{L^{\infty}\left(0, T ; L \chi_{1}^{\infty}(\mathbb{R})\right)} \int_{0}^{T} \int_{y \leq \frac{\rho}{\sqrt{4 \nu t}}} \varepsilon \gamma\left(x_{1}, t\right) \exp \left(-y^{2}\right) d x_{1} d y d t \\
& \leq C_{E} C_{N S} \nu_{0} \operatorname{erfc}\left(\frac{\rho}{\sqrt{4 \nu T}}\right)+\varepsilon C_{E}\|\gamma\|_{L^{1}\left(0, T_{;} ; L^{1}\left(\mathbb{R}_{+}\right)\right)}
\end{aligned}
$$

- Passing $\nu \rightarrow 0$ with $\rho(\varepsilon)$ and $T$ are fixed, and $\operatorname{erfc}(z) \rightarrow 0$ as $z \rightarrow \infty$, we arrive at

$$
\lim _{\nu \rightarrow 0} \int_{0}^{T}\left|T_{6, \nu}(t)\right| d t \leq \varepsilon\left\|U^{\mathbb{E}}\right\|_{L^{\infty}\left(0, T ; L^{\infty}(\mathbb{R})\right)}\|\gamma\|_{L^{1}\left(0, T ; L^{1}\left(\mathbb{R}_{+}\right)\right)}
$$

- Recall $\gamma$ is independent of $\varepsilon$, and $\varepsilon>0$ is arbitrary.


## $T_{6}$ bound in Theorem III.

- Assuming the uniform boundedness of and uniform integrability of $\partial_{1} u_{1}^{\text {Ns }}$ in $L^{2}\left(0, T ; L^{1}(\mathbb{H})\right)$ we have:

$$
\begin{aligned}
& \int_{0}^{T}\left|T_{6, \nu}(t)\right| d t \\
& \leq \int_{\mathbb{R}_{+}} \exp \left(-y^{2}\right) \\
& \times \int_{0}^{T} \int_{\mathbb{R}}\left\|u_{1}^{\mathrm{NS}}(t)\right\|_{L_{x_{1}, x_{2}}^{\infty}(\mathbb{H})} \int_{0}^{\sqrt{4 \nu t y}} \mid \partial_{2} u_{2}^{\mathrm{NS}}\left(x_{1}, z, t\right) \\
& \leq\left\|u_{1}^{\mathrm{NS}}(t)\right\|_{L^{2}\left(0, T ; L^{\infty}(\mathbb{H})\right)} \int_{\mathbb{R}_{+}} B_{\nu}(y) \exp \left(-y^{2}\right) d y
\end{aligned}
$$

$$
\times \int_{0}^{T} \int_{\mathbb{R}}\left\|u_{1}^{\mathrm{NS}}(t)\right\|_{L_{x_{1}^{\infty}, x_{2}}(\mathbb{H})} \int_{0}^{\sqrt{4 \nu t y}}\left|\partial_{2} u_{2}^{\mathrm{NS}}\left(x_{1}, z, t\right)\right| d z\left\|U^{\Xi}\left(x_{1}\right)\right\|_{L_{t}^{\infty}[0, T]} d x_{1} d t d y
$$

where

$$
\left(B_{\nu}(y)\right)^{2}=\int_{0}^{T}\left(\int_{\mathbb{H}}\left|\partial_{1} u_{1}^{\mathrm{NS}}\left(x_{1}, z, t\right)\right|\left\|U^{\Xi}\left(x_{1}\right)\right\|_{L^{\infty}([0, T])} \mathbf{1}_{z \leq \sqrt{4 \nu T y}} d z d x_{1}\right)^{2} d t
$$

- Pointwise, we have

$$
\begin{aligned}
B_{\nu}(y) & \leq\left\|U^{E}\right\|_{L^{\infty}\left(0, T ; L^{\infty}(\mathbb{R})\right)}\left\|\partial_{1} u_{1}^{\mathrm{NS}}\right\|_{L^{2}\left(0, T ; L_{L_{1}, 2}^{1}(\mathbb{H})\right)} \\
& \leq C_{\mathrm{E}} C_{\mathrm{NS}} \nu_{0} \in L^{1}\left(\exp \left(-y^{2}\right) d y\right) .
\end{aligned}
$$

## $T_{6}$ bound in Theorem III.

- In order to apply DCT and conclude that

$$
\lim _{\nu \rightarrow 0} \int_{\mathbb{R}_{+}} B_{\nu}(y) \exp \left(-y^{2}\right) d y=0
$$

we need to show that for each fixed $y>0$ we have

$$
\lim _{\nu \rightarrow 0} B_{\nu}(y)=0
$$

- Fix $\varepsilon>0$, and pick the $\eta=\eta\left(\varepsilon / 2 C_{\mathrm{E}}\right)$ given by uniform integrability.
- For $R>0$, define the level set

$$
A_{R}=\left\{x_{1} \in \mathbb{R}:\left\|U^{ᄐ}\left(x_{1}\right)\right\|_{L^{\infty}[0, T]} \leq R\right\} .
$$

- If $R$ is sufficiently small (depending on $\varepsilon$ ) we use

$$
\left.\left\|\partial_{1} u_{1}^{\text {NS }}\left(x_{1}, z, t\right) \mathbf{1}_{z \leq \sqrt{4 \nu} T_{y}}\right\| U^{\mathrm{E}}\left(x_{1}\right)\left\|_{L^{\infty}[0, T]}\right\|_{L^{2}\left(0, T_{;} ; L_{x_{1}}^{1}, z\right.}\left(A_{R} \times \mathbb{R}_{+}\right)\right) \leq R C_{\mathrm{NS}} \nu_{0} C_{\mathrm{E}}
$$

- On the other hand, $\left|A_{R}^{C}\right| \leq \frac{C_{E}}{R}$ so that

$$
|\Omega|=\left|A_{R}^{c} \times\{z: 0<z \leq \sqrt{4 \nu T} y\}\right| \leq \frac{C_{\mathrm{E}}}{R} \sqrt{4 \nu T} y \leq \eta\left(\varepsilon / 2 C_{\mathrm{E}}\right)
$$

if we choose $\nu$ sufficiently small (depending on $y$ and $\varepsilon$ ).

## Van Dommelen and Shen ('80) - Prandtl separation

- Consider a non-trivial stationary Euler flow at infinity (i.e. non-constant, or at least constant not 0)

$$
\begin{aligned}
U^{£}(x) & =\kappa \sin (x) \\
-\partial_{x} P^{\Xi}(x) & =\frac{\kappa^{2}}{2} \sin (2 x)
\end{aligned}
$$

where $\kappa \in \mathbb{R}$ is a parameter, and $x \in[-\pi, \pi]$.

- These are stationary solutions of the Bernoulli equation

$$
\partial_{t} U^{E}+U^{E} \partial_{x} U^{E}=-\partial_{x} P^{E} .
$$

- Consider the Prandtl equations with these boundary conditions.
- Conjecture: Based on numerical experiments, the Prandtl solution cannot remain smooth for all time, i.e. they blow up in finite time.


## Van Dommelen and Shen ('80)



Figure: The distortion of a typical Lagrangian grid with time.

## Van Dommelen and Shen ('80)



Figure: The variation of the displacement thickness $\delta^{*}(t, x)$ for various times.

$$
\delta^{*}(t, x)=\int_{0}^{\infty}\left(1-\frac{u_{1}^{\mathrm{P}}(x, y, t)}{U^{\mathrm{E}}(x, t)}\right)
$$

## Blowup in Prandtl?

- The "numerical blowup" seen by van Dommelen and Shen was reconfirmed by several groups, on finer computers with more sophisticated methods:
- Cassel-Smith-Walker ('96)
- Hong-Hunter ('03)
- Gargano-Sammartino-Sciacca ('09)
- Caflisch-Gargano-Sammartino-Sciacca ('15)
- Goal: a mathematically rigorous proof?
- E-Engquist ('01): consider $\kappa=0$, and datum that is compactly supported in $y$, which is large (just about to blow up), and show that it does indeed blow up in finite time.
- Proof by contradiction: either smoothness or decay towards 0 as $y \rightarrow \infty$ fails. Local existence in this class missing at the time.
- Caflisch-Gargano-Sammartino-Sciacca ('15): at the level of numerical simulations, the complex structure of the $\kappa=0$ blowup is of different type from the $\kappa \neq 0$ singularity.
- Dalibard-Masmoudi ('14): proof of separation in a steady flow.


## Theorem (IV. Kukavica-V.-Wang ('15))

Consider the Cauchy problem for the Prandtl equations with boundary conditions at $y=\infty$ matching the van Dommelen-Shen scenario. There exists an open set of initial conditions $u_{0}^{p}$ which are real-analytic in $x$ and $y$, such that the unique real-analytic solution $u^{p}$ to the Prandtl equations, blows up in finite time.

- Who blows up?

$$
\mathcal{G}(t)=\int_{0}^{\infty}\left(\kappa \varphi(t, y)-\partial_{x} u_{1}^{\mathrm{P}}(t, 0, y)\right) w(y) d y
$$

where $\varphi(t, y)$ is a suitable caloric lift of the boundary conditions, and $w(y)$ is a suitable integrable weight.

- This is approximatively: the displacement thickness
$\kappa \delta^{*}(t, 0)=\lim _{x \rightarrow 0} \int_{0}^{\infty}\left(\kappa-\frac{u^{\mathrm{P}}(t, x, y)}{\sin (x)}\right) d y=\int_{0}^{\infty}\left(\kappa-\partial_{x} u^{\mathrm{P}}(t, 0, y)\right) d y$


## Remarks

## Inviscid limit

- Local in time inviscid limit holds for these initial conditions Sammartino-Caflisch ('98)
- We prove that the Prandtl expansion approach to the inviscid limit should only be expected to hold on finite time intervals.


## More general Euler flows

- The proof holds if $U^{E}(x)=\kappa \sin (x)$ is replaced by any odd function of $x$, upon letting $P^{E}(x)=-\left(U^{E}(x)\right)^{2} / 2$.


## More general initial conditions

- The analyticity of the initial datum is only used to ensure the local existence and uniqueness of (sufficiently) strong solutions.
- Instead, we may pick any initial datum which is matches the $\kappa \sin (x)$ at $y=\infty$, and for which the Prandtl system is locally well-posed.
Size of the datum: needs to be sufficiently large, depending on $\kappa$.
- Ignatova-V. ('15): $\varepsilon$-small analytic perturbations of the error function solve Prandtl for $\left[0, T_{\varepsilon}\right]$, where $T_{\varepsilon} \geq \exp \left(\varepsilon^{-1} / \log \left(\varepsilon^{-1}\right)\right)$.


## Sketch of proof of Theorem IV

- Consider datum which is smooth and odd with respect to $x$.
- The unique smooth solution obeys the same symmetry, and thus

$$
u(t, 0, y)=\partial_{y} u(t, 0, y)=\partial_{x x} u(t, 0, y)=0
$$

- Restrict dynamics to the $x$-axis, where the Lagrangian trajectories are frozen, and the vorticity is vanishing identically.
- The function

$$
b(t, y)=\left(-\partial_{x} u\right)(t, 0, y)
$$

obeys

$$
\begin{aligned}
& \partial_{t} b-\partial_{y y} b=b^{2}-\partial_{y}^{-1} b \partial_{y} b-\kappa^{2} \\
& \left.b\right|_{y=0}=0,\left.\quad b\right|_{y=\infty}=-\kappa .
\end{aligned}
$$

- Do not like: $b$ doesn't have a definite sign; there is a competition between $b^{2}$ and $-\kappa^{2}$ on the RHS.


## Sketch of proof of Theorem IV (cont'd)

- Lift the function b "up" by an artificial corrector

$$
a(t, y)=b(t, y)+\varphi(t, y)
$$

where

$$
\begin{aligned}
& \partial_{t} \varphi-\partial_{y y} \varphi=\kappa^{2} \\
& \left.\varphi\right|_{y=0}=0,\left.\quad \varphi\right|_{y=\infty}=\kappa+\kappa^{2} t \\
& \left.\varphi\right|_{t=0}=\kappa \operatorname{Erf}(y / 2) .
\end{aligned}
$$

so that $a(t, y)$ obeys

$$
\begin{aligned}
& \partial_{t} a-\partial_{y y} a=a^{2}-\partial_{y}^{-1} a \partial_{y} a+L_{\varphi}[a]+F_{\varphi} \\
& \left.a\right|_{y=0}=0,\left.\quad a\right|_{y=\infty}=\kappa^{2} t \geq 0 \\
& L_{\varphi}[a]=-2 a \varphi+\partial_{y}^{-1} a \partial_{y} \varphi+\partial_{y}^{-1} \varphi \partial_{y} a \\
& F_{\varphi}=\varphi^{2}-\partial_{y}^{-1} \varphi \partial_{y} \varphi \geq 0 .
\end{aligned}
$$

- The upshot: minimum principle for a

$$
a_{0}(y) \geq 0 \Rightarrow a(t, y) \geq 0
$$

## Sketch of proof of Theorem IV (cont'd)

- Define a Lyapunov functional

$$
\mathcal{G}(t)=\int_{0}^{\infty} a(t, y) w(y) d y
$$

where $w$ is a non-negative weight, with $w \in L^{1} \cap W^{2, \infty}$, and $w(y=0)=w(y=\infty)=0$.

- Then, by choosing $w$ very carefully, we may prove

$$
\begin{aligned}
\frac{d \mathcal{G}}{d t} & =\int a \partial_{y y} w+2 \int a^{2} w-\frac{1}{2} \int\left(\partial_{y}^{-1} a\right)^{2} \partial_{y y} w+\int L_{\varphi}[a] w+\int F w \\
& \geq \frac{1}{c_{*}} \mathcal{G}^{2}-c_{*}(1+t) \mathcal{G}
\end{aligned}
$$

for some $c_{*}=c_{*}(\kappa, w)>0$.

- To conclude, choose

$$
\mathcal{G}_{0} \geq 4 c_{*}^{2}
$$

and obtain the finite time blowup of $\mathcal{G}(t)$.

- For example, let $A \gg 1$, and define

$$
u_{0}(x, y)=\left(\kappa \operatorname{Erf}(y / 2)-a_{0}(y)\right) \sin (x), \quad a_{0}(y)=A y^{2} \exp \left(-y^{2}\right)
$$

