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The Euler and Navier-Stokes equations

» Incompressible Navier-Stokes
HUNS + UM VU — VAU + VP =0, V-u" =0,
» Incompressible Euler
OUF +UF-VUFE+VPF=0, V- -u*=0.
» Boundary conditions: Dirichlet for Navier-Stokes
U'ga =0,
and non-penetrating for Euler



The question of inviscid limit
» Initial conditions are asymptotically the same:
luy® — uglle —+0 as v —0.

Finite time horizon: fix T > 0.
For simplicity, fix: d =2 and Q = H.
Navier-Stokes energy inequality:

v

v

v

t
lu* ()17 +2V/0 IVu(s)fds < [|ug®|Z-

v

Space of convergence: the energy space L>(0, T; L?(H)).
The problem:

v

sup |lu(t) — u*(t)||e —0 as v—0 ???
te[0,T]

v

Smooth background Euler solution: ug € H(H), for some s > 2.
C: is any constant that depends on ||U® || Lo (o, 7;Hs(m))-

v



Kato ('84) and friends

» Kato ('84): the inviscid limit holds if and only if

)
Iimz// / VU (x, ) Rdxdt = 0
v=0 Jo Jx<ow)

» Temam-Wang ('98), and Wang ('01):

only tangential gradients, but thicker layer 6(v): Iimo M =0.
v— 14

» Kelliher ('08): inviscid limit holds if and only if
W = WF — USpgy  in (HY(H))*
» Bardos-Titi ("15): inviscid limit holds if and only if

v —0 in D'([0, T],0H)



Further “positive” results on the inviscid limit

» Masmoudi (’98): inviscid limit holds if —vA is replaced by
anisotropic viscosity —v10yy — v20xx, With vy /v2 — 0

» Lopes Filho-Mazzucato-Nussenzveig Lopes-Taylor ('08):
vanishing viscosity limits holds for circularly symmetric 2D flows
on a rotating boundary

» similar positive results in other symmetric geometries:
Iftimie-Lopes Filho-Nussenzveig Lopes ('03), Lopes
Filho-Kelliher-Nussenzveig Lopes ('09); Mazzucato, Taylor ('11);

» Guo-Nguyen ('15): inviscid limit holds for a steady moving plate

» Bardos-Szekelyhidi-Wiedemann ('14): weak-strong uniqueness if
Holder near the boundary

» Bardos-Nguyen ('14): Kato-type results for compressible fluids



Inviscid limit holds if the Prandtl expansion is valid

Theorems(!): if the initial datum obeys [...] then inviscid limit holds.
» Sammartino-Caflisch ('98): inviscid limit holds if the initial datum
is real analytic in all variables.
» Maekawa (’14): inviscid limit holds if the initial vorticity is
identically vanishing near 9H.



Asymptotic Expansions in the inviscid limit: Prandil

» Inthe BL: u}®|,—o has to jump from 0 to uf|,—o = O(1).
» In the BL: dominating viscous term vd,, u}®* = O(1), so that the
thickness of the BL should be

e=V
» For v <« 1, itis natural to consider the asymptotic expansion
uNS _ u(Ns,O) + 5U(NS,1) + €2u(NS,2) 4.

where as before ¢ = /v

outside of the BL: u(9) ~ (*

inside the BL: u™$0) ~ ¢°

let Y = y/e be the boundary layer variable
Prandtl plugs in the ansatz:

vV v v v

U(NS,O)(X’y) ~ (U?(X, Y)7EU5(X, Y))

in the Navier-Stokes equations, and formally sends ¢ to 0



The Prandtl boundary layer equations

» In the limit we obtain the Prandtl boundary layer equations:

OpU; — Dyy U§ + UFOUS + LBy U + 9xp” =0
6y,OP =0
OxU§ + Oyu5 =0

» Boundary conditions
lim uf =uj(y =0) = U"
Y—o0
lim pP = p*(y =0) = P*
Y—o0
U(Y=0)=uy(Y=0)=0
» Where UF and PF obey the Bernoulli equations

OiUF + UFOxUF = —0xPF



Mathematical issues for the Prandtl equations
Well-posedness in suitable functional spaces:
» 2D Local existence. Monotonic in y datum.
» Oleinik ('66): Crocco transform. Strong solutions.
» Xin and Zhang ('04): Weak solutions for pressure of fixed sign.
» Masmoudi-Wong ('12): energy methods + magic cancellation: the
function g = 9,u — ud, log(9d, u) obeys better bounds than u or 9, u.
> In a similar spirit: Alexandre-Wang-Xu-Yang ('14).
» 2D&3D Local Existence. Analytic datum.
» Caflisch and Sammartino (‘98 - Part I): analyticity w.r.t. both x and
y, exponential decay in y.
» Cannone-Lombardo-Sammartino ('03): analyticity w.r.t. only x,
exponential decay in y.
» Kukavica-V. ('12): energy method; analyticity w.r.t. only x, any
integrable decay in y.
» Local existence for non-analytic datum with critical points.
» Gerard-Varet—Masmoudi ('13): Gevrey 7/4 initial datum with
finitely many non-degenerate critical points, exponential decay in y.
» Kukavica-Masmoudi-V.-Wong ('14): interplay between monotonicity
in y an analyticity in x.
» Xu-Zhang ('15): Sobolev initial datum which is close to a shear flow
with non-degenerate critical points, algebraic decay in y.



Mathematical issues for the Prandtl equations

lll-posedness:

» Sobolev ill-posedness: Grenier ('00), Gerard-Varet and Dormy
(’09), Gerard-Varet and Nguyen ('12); Guo and Nguyen ('12)

Justify the formal derivation of the Prandtl equations in the inviscid
limit, i.e. prove that

U™ = uF(1 — var) + UPxeL + O(e)

» Sammartino and Caflisch (98 - Part Il): positive results in the
real-analytic case
» Grenier(’00); Guo-Nguyen ('12); Grenier-Guo-Nguyen ('13-'14):
negative results in Sobolev spaces
Note: just because Prandtl is ill-posed (aka. strongly unstable) in

some topology, it does not mean that the inviscid limit doesn’t hold.
The implication only goes the other way around.



Motivation

» Assume Prandtl is locally well-posed in the topology of some
space X. Assume U3, us € X. Does the inviscid limit hold in L2,
on an O(1) time interval?

» Yes: if X is the space of real-analytic functions.
» Other settings?

» Kato-type results are conditional on the behavior of the
Navier-Stokes solution: Assume assume that u§ € X and
U™ € L X. Then the inviscid limit holds in L2 for an O(1) time.

» One-sided conditions a la Oleinik?
» Conditions which do not involve derivatives?



One-sided Kato criterion

Theorem (I. Constantin-Kukavica-V. ('14))
Let M, be a positive function which obeys

;
/ M,(t)dt -0 as v —0.
0

Define the boundary layer T, by

r(t) = {(x1,x2) EH:0< x < é—ilog (Mf(i‘))}'

Assume that for all v sufficiently small we have

y'/O'T (U(x1,t) (wNS(X17X2,t)+ Mm)) 2

1%
L2(T, (1))
where f_ = min{f,0}. Then the inviscid limit holds.

dz‘</M
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v

v

v

v

Our result states that:
» if there is no back-flow in the Euler background, i.e. U > 0, (which
persists for O(1) time)
» and the part of the vorticity which is more negative than o(1)v~",
i.e. (W' +o0(1)r~")_ in alog-Kato layer, is under control (a la Kato)
» then the inviscid limit holds.

Condition is strictly weaker than Kato’s.

Cannot expect the Navier-Stokes vorticity to remain of a definite
sign, as the Prandtl one does.

Result works in bounded domains with smooth boundaries.
Condition is satisfied e.g. by viscous shear flow.



Theorem (lI. Constantin-Elgindi-Ilgnatova-V. (’15))
Assume that there exists a constant Cys > 0 such that
T

sup [ IU(0)]2 eyt < Cuort
VG(O,Do] 0

and moreover that the family
{3} e(0,0) s €quicontinuous at  xp = 0.
Then the inviscid limit holds in the energy norm.
» The equicontinuity condition is that there exists a function
0 <7y(x1,t) € Li,, ([0, T] x R)
so that for any € > 0, there exists p = p(¢) > 0 such that
[UYS (X1, Xo, ) UB (X1, Xo, 1) < ey(xq,t), forall x» € (0,p],

and all (t,xy) € [0, T] x R, uniformly in v € (0, ).

» This condition implies that Lagrangian paths originating in a
boundary layer do not reach in finite time beyond a fixed uniform
dilate of the boundary layer. Before separation!



Theorem (lll. Constantin-Elgindi-Ignatova-V. (’15))

Assume ;

sup U (O)F At < Cusro
VE(OA,Vo] 0

and that the tangential component of the Navier-Stokes flow obeys

T
sup [ 04U () 2y ot < Custo
ve(0,10] /0

for some constant C.s > 0, and that the family
{01U°}c0.] IS uniformly integrable in - L2(0, T; L' (H)),
Then the inviscid limit holds.

» By the last condition we mean that given an arbitrary € > 0, there
exists n = n(e) > 0 such that

)
/0 05 U (D)2t < ¢

whenever the subset Q C H obeys |Q] < .



» Note that 0; U}® vanishes identically on 0H, which is not the case
for the Navier-Stokes vorticity w"* = 9-u}® — 01 u3®, which is
expected to have a measure supported on the boundary of the
domain in the inviscid limit Kelliher ’(08). Thus, the vorticity is not
expected to be uniformly integrable in L2L}.

» Also, note that (uniform in v) higher integrability of the
Navier-Stokes vorticity, such as L for p > 2 cannot hold unless
UF =0, as is shown in Kelliher ('14).



Open problem

Removing the equicontinuity assumption on u}°us® at the boundary of
the domain is an interesting question:
Q: assuming merely

T
sup [ IU()]2 eyt < Cuort
VG(O,Vo] 0

does the inviscid limit hold?



Sketch of proof of Theorems II. and lll. The Setup.

» Start like Kato: construct a boundary layer corrector such that

V-u=0
Uilom = —U*
us|om = 0

» The corrector will have a characteristic length é(vt), by which we
mean that the following bounds hold:
10| oqery + 10| oery + N0+ Ul oany + 1011 U" | oy < Ced(vt)'/P
02| oz < Ced(wt) ' F1/P
|01 U3 || oy < Ced(vt)
forall1 < p < .

» Then the function
v = UM — F— Uk
obeys V- v =0and v|sg = 0, so it is amenable to L2 energy
estimates, and

lim sup [[v(f)]jz=0 <«  lim SUP [u™(t) — U5 ()|l e =0
v—=0telo, 7] v=0te(o,



Equation for v and the Prandtl equations
» The equation obeyed by v is

OV —vAVv+ Vv -VUF+ U -Vv+Vqg
=vAU* — (iU — VAU + U - VU + U° - VUF)

» The Prandtl equations’ goal is to solve
opuy — vy Ul + (UF + Uf) - VUL +U° - VUf =0
us = —0x0, ' uf
so that in the tangential component we one is left with
v —vAV+ v - VU +U* - Vv +Vq=vAu —v-Vui —small

» However, the resulting term

"
V262U$V1 = 7/ V28yU$V1
/. v
2
f||aYU1||L°°||V||L2 or < \Vulloyui|= [V VIIZ

is not under control: need higher order correctors



Equation for v and resulting errors
» The equation obeyed by v is

v —vAV+ Vv VU + U -Vv+ Vg
= vAUF — (01U — VAU + U - VU + U - VUF)
» Multiply by v and integrate by parts

1d |
2 dt
where we have denoted

T = —/(8,UK —vAU") - v
H
T2—|—T3:_/(UNS.VUE).UK_/(UK'VUE)
H H
T4 - ALA] UZsa UZ
Tom [ (e - @) o
H

Te = / S USS o U
H

VIE + vIIVVIE < CellvIz + vCellVlie + T+ + T



Construction of the corrector u«

» Eliminate the contribution from T; to leading order in v:

Vavt
X2
US(x1, X, ) = — / 01U (x1, v, t)dly
0

(136 = UG, ) (e (2 ) = Vantaga)

where 7 is a positive bump, of mass 1/./7, approximating x( 2},
and erfc(z) =1 —erf(z) = % [;° exp(—y?)dy.

» Note: essential that v} has zero mean in x,.

» This has the characteristic length of the Prandtl layer

S(vt) =Vt



Bounding Ts

» Assuming an L2L$° bound on u*, we may estimate

/ ITa(t |dt<//y ()?) On |

< ||UNSHL2(0,T;Loo)||31 Ul o< (0, 7:1)
< (CNSVO)ZCE(VT)1/2

» For this term a weaker assumption would have been OK:
u™  uniformly bounded in  L'(0, T; L L§, (H))

for any p > 2.



Bounding Tg

» We estimate
| Ts(t)] < Ce(vt)'/2 + C|Te, ()|

where

T
/ o, (8)|dl

1o (1, Vavty, s (x1, Vavty, t)| [U%(xi, t)| exp(—y?)dxs dydt

» The measure

fixy.y,t = |US(X1, )| (o, 77) €XP(—y?) dlxy dydt
gives bounded mass to [0, T] x H.
> If fOT sup,, [|u™(t)||?2.. dt < oo, may conclude by DCT if we knew

US(x1, Vauvty, t)us®(xq, Vavty,t) -0 as v—0

pointwise(!) in (x1, y, t).



T bound in Theorem II.

» Assume equicontinuity at x = 0 of the family u}°u5®.
» Given e > 0, let p(¢) > 0 be such that: [def of equicontinuity].

T
o p p
Te(0)|dt (splitintoy > — and y <
/0 Tou(b]ot (spitintoy > —E—andy < )
>P

< U lors (R))/ 105012, (/
Y270

Um0, 7o @) /0 | entx ey oyt
vS

< CcCysiy erfc <\/40’f7—> +5CEH7HL‘(O.T;L‘(R<))

» Passing v — 0 with p(¢) and T are fixed, and erfc(z) — 0 as
Z — oo, We arrive at

exp(—yz)dy> dt

)
tim [ Te (0l < el UFlumo ramcoy oo me e

» Recall «y is independent of ¢, and > 0 is arbitrary.



Tes bound in Theorem IlI.

» Assuming the uniform boundedness of and uniform integrability
of 914y in L2(0, T; L'(H)) we have:

’
/ | Te. ()|dlt
0

< / exp(—y?)
R+
Vavty
[ 1O [ 1900 2,01 oty

< 1645 (0) 20,71 a1 / B, (y) exp(—y2)dy

+

where

2
(B / (/ |81U X1,Z t |||UE(X1)||Loo ([0, T])1z<\/4vyd2dx1> at

» Pointwise, we have
B (y) < IU¥l| 0,7z 101 U3® | 20, 7, o)
< CeCysiio € L' (exp(—y?)dy).



Ts bound in Theorem Il
» In order to apply DCT and conclude that

im / B, (y) exp(—y?)dy = 0

v—0
we need to show that for each fixed y > 0 we have
Iim0 B.(y)=0.

v

Fix ¢ > 0, and pick the n = n(¢/2C¢) given by uniform
integrability.
For R > 0, define the level set

An = {x1 € R: [U(0)lli~po.1 < RY.

If R is sufficiently small (depending on ¢) we use

v

v

101u3°(x1, 2, )1, < a7y 1US (1) 0,1l 20,7y, (anxR)) < RCusi0Ce

v

On the other hand, |A%| < & so that

Q=|Ag x{z: 0< z<VarTy}| < %\/4V7—y§7]€ 2Cy)
R R

if we choose v sufficiently small (depending on y and ¢).



Van Dommelen and Shen (’80) - Prandtl separation

» Consider a non-trivial stationary Euler flow at infinity (i.e.
non-constant, or at least constant not 0)

Uf(x) = rsin(x)
—0xP*(x) = %Zsin(2x)

where « € R is a parameter, and x € [—, 7].
» These are stationary solutions of the Bernoulli equation

61‘UE + UEa)(UE = _a)(PE.

» Consider the Prandtl equations with these boundary conditions.

» Conjecture: Based on numerical experiments, the Prandtl
solution cannot remain smooth for all time, i.e. they blow up in
finite time.



Van Dommelen and Shen (’80)
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Figure: The distortion of a typical Lagrangian grid with time.



Van Dommelen and Shen (’80)

Figure: The variation of the displacement thickness 6* (¢, x) for various times.



Blowup in Prandtl?

>

v

The “numerical blowup” seen by van Dommelen and Shen was
reconfirmed by several groups, on finer computers with more
sophisticated methods:

» Cassel-Smith-Walker ('96)

» Hong-Hunter ('03)

» Gargano-Sammartino-Sciacca ('09)

» Caflisch-Gargano-Sammartino-Sciacca ('15)
Goal: a mathematically rigorous proof?

E-Engquist ('01): consider x = 0, and datum that is compactly
supported in y, which is large (just about to blow up), and show
that it does indeed blow up in finite time.

Proof by contradiction: either smoothness or decay towards 0 as
y — oc fails. Local existence in this class missing at the time.

Caflisch-Gargano-Sammartino-Sciacca ('15): at the level of
numerical simulations, the complex structure of the x = 0 blowup
is of different type from the « # 0 singularity.

Dalibard-Masmoudi ('14): proof of separation in a steady flow.



Theorem (IV. Kukavica-V.-Wang (’15))

Consider the Cauchy problem for the Prandt! equations with
boundary conditions at y = oo matching the van Dommelen-Shen
scenario. There exists an open set of initial conditions uy which are
real-analytic in x and y, such that the unique real-analytic solution u®
to the Prandtl equations, blows up in finite time.

» Who blows up?

o - | " (kplty) — O (1,0, y))w(y)dy

where ¢(t, y) is a suitable caloric lift of the boundary conditions,
and w(y) is a suitable integrable weight.

» This is approximatively: the displacement thickness

k0*(t,0) = XIiLnO/OOC </<, — W) dy = /Om (k= 0xU’(1,0,y)) dy



Remarks
Inviscid limit
» Local in time inviscid limit holds for these initial conditions
Sammartino-Caflisch ('98)

» We prove that the Prandtl expansion approach to the inviscid
limit should only be expected to hold on finite time intervals.

More general Euler flows
» The proof holds if UF(x) = «sin(x) is replaced by any odd
function of x, upon letting PE(x) = —(UE(x))?/2.
More general initial conditions

» The analyticity of the initial datum is only used to ensure the local
existence and uniqueness of (sufficiently) strong solutions.
» Instead, we may pick any initial datum which is matches the
K sin(x) at y = oo, and for which the Prandtl system is locally
well-posed.
Size of the datum: needs to be sufficiently large, depending on «.

» Ignatova-V. ('15): e-small analytic perturbations of the error
function solve Prandtl for [0, T.], where T. > exp(s~'/log(c~")).



Sketch of proof of Theorem IV

>

>

Consider datum which is smooth and odd with respect to x.
The unique smooth solution obeys the same symmetry, and thus

U(ta07y) = 6yu(tao7y) = aXXU(taovy) = 0

Restrict dynamics to the x-axis, where the Lagrangian
trajectories are frozen, and the vorticity is vanishing identically.

The function
b(t, y) = (—=0xu)(t,0,y)
obeys
Otb — dyyb = b? — 0, 'boyb — K?
bly—o =0, bly=cc = —k.

Do not like: b doesn’t have a definite sign; there is a competition
between b? and —«? on the RHS.



Sketch of proof of Theorem IV (cont’d)
» Lift the function b “up” by an artificial corrector
a(t,y) = b(t,y) +¢(t,y)
where
Orp — Oy = K2
¢ly—0 =0, (p|y:<>o=l€+l€2t
¢lt=0 = KErf(y/2).
so that a(t, y) obeys
da—dya=a —0,'adya+ Lylal+F,
aly—0=0, aly_e=r’t>0
Lyla] = —2ap+ 0, 'adyp+ 0, v0,a
Fo=¢%— 0,00y > 0.
» The upshot: minimum principle for a

a(y) 2 0= a(ty) = 0.



Sketch of proof of Theorem IV (cont’d)

» Define a Lyapunov functional

G(t) = /0 " at.y)w(y)dy

where w is a non-negative weight, with w € L' n W?°°, and
w(y =0) =w(y =o0)=0.
» Then, by choosing w very carefully, we may prove

dg /aayyw+2/a w——/a‘ )ayyw+/L [a]w+/Fw

>—g2—c*(1+tg

%

for some ¢, = c.(k, w) > 0.
» To conclude, choose
Go > 4c?
and obtain the finite time blowup of G(t).
» For example, let A > 1, and define

Uo(x,y) = (KErf(y/2) — ao(y))sin(x),  ao(y) = Ay*exp(—y®).



