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Vorticity
Consider the incompressible Euler equations in 2D:

∂tu + u ·∇u + ∇p = 0
∇ · u = 0 .

If one defines the vorticity:

ω = ∇× u

then Euler equations, in the vorticity formulation, write:

∂tω + u ·∇ω = 0
ω(x , y , t = 0) = ω0

To recover u, introduce the stream function ψ such that u = ∇⊥ψ.
Then:

∆ψ = −ω
and therefore:

u = −∇⊥∆−1ω
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Smooth and less regular solutions

Existence and uniqueness of solutions for given initial data:
When the initial datum ω0 is regular one can achieve many well
posedness results of the above problem :

Global in time ∃ of 2D
classical solutions

⇒ well-posedness à la Hadamard

However there are cases in which one is interested in initial data
where vorticity has less regular configuration.

Non-smooth vorticity
Weak solutions appropriate for modeling an isolated region of intense
vorticity, e.g. vorticity discontinuous but bounded:

Yudovich (1963): solutions for ω0 ∈ L1⋂L∞;
From the above result, it follows an existence and uniqueness
result globally in time for vortex-patches initial data. M& B book
Zero Viscosity limit Constantin & Wu 1995, Sueur 2015
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Vortex sheets
These results DO NOT include less regular initial data as
measure-valued initial vorticity.
The interest in these kind of data, beside the intrinsic interest, is also
motivated by the so called vortex–sheet datum.

Vortex sheet

a vortex sheet is curve on which vorticity is highly concentrated as
a δ function
outside the curve, the flow is irrotational

It is an interface across which the tangential (to the curve) velocity
experiences a discontinuity.
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Vortex sheets

The importance of vortex sheets flows is due to:

a model for the wake left behind from a body immersed in a flow at
large Reynolds number;
prototype of interface dynamics
mixing layers of fluids.

Moreover (with a little of hindsight) the complicated evolution of vortex
sheets is a natural source for the spontaneous appearance of small
scale motion in incompressible fluids (onset of turbulence).

In these cases the interest is:
1 determination of the motion of the curve,
2 occurrence of singularity;
3 characterization of singularity,
4 . . .
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Initial value problem for Euler eqs with VS initial data

The basic result is of the following form:

Existence of solutions
If ω0 is a bounded measure with positive singular part, then Euler
equations (in the weak form) admit as solution a bounded measure ωt ,
and u ∈ L∞loc(R,L2

loc).

Delort ’91, Majda ’93, Di Perna and Majda ’87; Chemin ’95; Evans and Muller
94’; Schochet ’95; Lopes, Nussenzveig and Xin ’01, ’06; Niu, Jiu and Xin ’07;
Brenier, De Lellis, and Szekelyhidi ’10

But:
it gives no information on the structure of the solution.
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The explicit approach

One can tackle the mathematical description of VS from a different
point a view: one tries to explicitly determine the interface using a
time-dependent parametrization.

Let y = ϕ(x) a curve where the vorticity is initially concentrated:

ω0(x , y) = γ0(x)δ(y − ϕ(x))

γ0(x) is the vorticity density, i.e. the jump strength.

Assuming that a vortex sheet remains a vortex sheet one writes:

ω(x , y , t) = γ(x , t)δ(y − ϕ(x , t))

and is interested in finding the y = ϕ(x , t).
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The Birkhoff–Rott equation

Characterize a point in the plane (x , y) by the complex variable
z = x + iy .
Parametrize the curve using the arc length s:

x + iϕ(x , t) = Z (s, t)

Use the potential theory to write the velocity field induced by the
vorticity concentrated on the sheet:

u − iv = − i
2π

∫
γ(s, t)ds′

z − Z (s′, t)

The velocity of the sheet is the average of the velocities above and
below the sheet:

U − iV = − i
2π

PV
∫

γ(s, t)ds′

Z (s, t)− Z (s′, t)
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The Birkhoff–Rott equation

Finally characterize a point P the curve using (instead of s) the total
circulation Γ contained between a reference point P̄ and P:

BR equation
∂Z ∗

∂t
= − i

2π
PV

∫
dΓ′

Z (Γ, t)− Z (Γ′, t)

Nonlinear, singular integro-differential equation.

A posteriori one justifies this equation showing that the velocity field
induced by the vorticity concentrated on this curve, whose strength is
determined using the conservation of vorticity, satisfies the Euler
equations in the weak form.
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B–R equation: an alternative formulation
Use cartesian coordinates (x , y). Let ϕ(x , t) the graph of the VS, and
let γ(x , t) the strength of the VS (the jump in the tangential velocity);
i.e.:

ω(x , y , t) = γ(x , t)δ(y − ϕ(x , t)) .

Using elementary considerations (the fact that the curve ϕ(x , t) is
material and conservation of vorticity) one gets:

BR equation: Alternative form

∂tϕ+ U∂xϕ = V
∂tγ + ∂x (γU) = 0 .

where (U,V ) is the velocity field on the curve:

U = − 1
2π

PV
∫

ϕ(x , t)− ϕ(x ′, t)
(x − x ′)2 + (ϕ(x , t)− ϕ(x ′, t))2γ(x ′) dx ′ (1)

V =
1

2π
PV

∫
x − x ′

(x − x ′)2 + (ϕ(x , t)− ϕ(x ′, t))2γ(x ′) dx ′ (2)
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Some of the known fact about BR equation

The BR equations develop singularity (infinite curvature)
1 Moore 79’ analytical evidence via asymptotic analysis
2 Numerics: Meiron, Baker and Orszag ’82, Krasny 86’

Although smooth initial
data in 2D are known to
lead to smooth solutions
for all time, this result
shows that singular initial
data (a vortex sheet in 2D)
can become more singular
(infinite curvature of the
sheet) in finite time.
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Some of the known fact about BR equation

Kelvin-Helmholtz instability:

Z (Γ, t) = Γ VS of constant strenght

is an equilibrium solution of the BR equation.
Linear stability analysis of this equilibrium yields a growing
eigenfunction:

( Z (Γ, t)− Γ ) ∝ exp (πkt) sin (2πkΓ)

Short wavelength solutions with arbitrary large growth rates.

Caflisch and Orellana 89’: If the initial profile is Hp p > 3/2 they
are ill posed. They develop the singularity in an arbitrarily short
time.
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Some of the known fact about BR equation

Use of analytic functions provides the stabilization necessary to
rigorously construct solutions in the presence of physical
instabilities.
This was first conjectured by Birkhoff(1962) and then rigorously
proved:

Theorem (Sulem, Sulem, Bardos, Frisch 81’)
If the initial data are such that the Fourier modes are
exponentially decaying (analytic data), then the B–R are well
posed (short time existence)

The proof holds for both the 2D and the 3D case.
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Some of the known fact about B–R equation

Long Time Existence of Solutions:

Theorem (Duchon and Robert ’88, Caflisch and Orellana
’86)
Suppose that initially the vortex sheet has a small sinusoidal
perturbation, so that

Z (y , t) = y + iε sin y ε small

Then the vortex sheet equation has a smooth solution for a
time interval 0 < t < 2K | log ε| in which K < 1 and K → 1 as
ε→ 0.

The time of existence is nearly optimal, since asymptotic analysis
(Moore 1984) indicates that a singularity will form at the critical time
t = 2|logε|+ O(log|logε|)·
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Some of the known fact about B–R equation

BR-α equations:
2D-Euler-α equations: existence and uniqueness of a global weak
solution with initial vorticity Radon measure on R2, with a unique
lagrangian flow map of the particles.
Bardos, Linshiz, and Titi 2010 proved a long time existence and
uniqueness theorem in Hölder spaces for the BR-α equations

The α-regularization mollifies the Kelvin-Helmholtz instability:
Linearization about the flat sheet of uniform intensity γ0 gives the
following growth rate for the Fourier modes:

λ(k) ∼ |k |
(
1− (1 +

1
α2k2 )−

1
2

) 1 k →∞ algebraic decay ∼ 1
α2|k|

2 α→ 0 original BR growth rate
Mollifications of the BR singular kernel based α-model are among the most
effective way to approximate the dynamics of a vortex-sheet
Wu, 2005 using also a result of David, 1984, gave a weaker notion of
the solution of the BR equation, chord-arc curves, that is able to follow
the roll-up of the sheet after the singularity.
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Vortex Layers

VISCOSITY DIFFUSES VORTICITY

To model this phenomenon one can use a layer of uniform vorticity and
small thickness:

Vortex Layers:
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Vortex Layers of uniform vorticity

1 Moore ’78: Using asymptotic analysis he derived the following
correction to the Birkhoff–Rott equation:

∂Z ∗

∂t
= − i

2π
PV

∫
dΓ′

Z (Γ, t)− Z (Γ′, t)
− ε i

6ω̄
∂

∂Γ

(
U4∂Z ∗

∂Γ

)
+ O(ε2)

where U(Γ, t) = γ(s, t) and ω̄ = γH is the total vorticity contained
in each cross section;

2 Baker and Shelley, ’90: Numerical results;
3 Benedetto and Pulvirenti, ’92 proved rigorously that the dynamics

of a vortex layer (of uniform vorticity) converges to the dynamics of
a vortex sheet when the thickness goes to zero.
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Denoting with ϕ+ and ϕ−

the boundaries of the domain
where the vorticity is concen-
trated they derived the follow-
ing equations:

∂tϕ
+ + U+∂xϕ

+ = V +

∂tϕ
− + U−∂xϕ

− = V−

∂tγ + ∂x

(
1
ε

∫ ϕ+

ϕ−
u(x , y)dy

)
= 0 .

u =

(
u
v

)
=

1
2πε

∫ ∞
∞

dx ′
∫ ϕ+

ϕ−

(
y ′ − y
x − x ′

)
(x − x ′)2 + (y − y ′)2 dy ′
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Our goal

We want to deal with the situation when vorticity is not compactly
supported.

It is exponentially decaying outside a small layer: a different approach
is needed. One has to deal with the "full" problem
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Statement of the problem

In the periodic strip (x , y) = [−π, π[×R we consider Euler equations

∂tω
ε + uε ·∇ωε = 0

uε = ∇⊥∆−1ωε

ωε(x , y , t = 0) = ωε0(x , y)

There exist a curve ϕ0(x) and two constant c, µ0 s.t.:

sup
y
‖ωε0‖x < cε−1e−µ0ε

−1|y−ϕ0(x)|

and the total amount of vorticity of the layer does not depend on ε, i.e.:∫
ωε0(x , y) dx dy = O(1)
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Statement of the problem: Functional setting
Denote by Dρ the strip of the complex plane of width ρ:

Dρ ≡ {(x , η) : x ∈ R/πZ, |η| < ρ} .
and with Σ(σ), where 0 < σ < π/4, the cone in the complex plane:

Σ(σ) ≡ {(Y , λ) : Y ∈ R, |λ| < |Y | tanσ} (3)

Moreover let α be a real number such that 0 < α < 1.
For a function f : Dρ → C we introduce the notation:

|f |ρ ≡ sup
(x,η)∈Dρ

|f (x + iη)| ,

|f |(α)
ρ ≡ sup

(x,η), (x̄,η)∈Dρ

|f (x + iη)− f (x̄ + iη)|
|x − x̄ |α

For a function g : Dρ × Σ(σ)→ C we introduce the notation:

|g|ρ,σ ≡ sup
(x,η)∈Dρ, (y,λ)∈Σ(σ)

|g(x + iη, y + iλ)| ,

|g|(α)
ρ,σ ≡ sup

(x , η), (x̄ , η) ∈ Dρ
(y , λ), (ȳ , λ) ∈ Σ(σ)

|g(x + iη, y + iλ)− g(x̄ + iη, ȳ + iλ)|[
(x − x̄)2 + (y − ȳ)2

]α/2
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Statement of the problem: Functional setting

Definition
Let f : Dρ → C. Then se say f ∈ Bρ when:

‖f‖ρ ≡ |f |ρ + |f |(α)
ρ <∞

Definition
Let g : Dρ × Σ(σ)→ C. Then we say g ∈ Bρ,σ when:

‖g‖ρ,σ ≡ |g|ρ,σ + |g|(α)
ρ,σ <∞

Definition
Let f : Dρ → C. then we say f ∈ Bm,ρ when:

‖f‖m,ρ ≡
∑
j≤m

|∂ j
x f |ρ + |∂m

x f |(α)
l,ρ <∞
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Statement of the problem: Functional setting

Definition
Let g : Dρ × Dσ → C. Then we say g ∈ Bm,ρ,σ,µ when:

‖g‖m,ρ,σ,µ =
∑

i+j≤m

|eµy∂ i
x∂

j
yg|ρ,σ +

∑
i+j=m

|eµy∂ i
x∂

j
yg|(α)

ρ,σ <∞

Definition
Let g : Dρ × Dσ × R→ C. Then we say g ∈ Bm,ρ,σ,µ,β,T when:

‖g‖m,ρ,σ,µ,β,T =
∑

i+j≤m

sup
0≤t≤T

|e(µ−βt)y∂ i
x∂

j
yg(·, ·, t)|ρ−βt ,σ−βt +

∑
i+j=m

sup
0≤t≤T

|e(µ−βt)y∂ i
x∂

j
yg|(α)

ρ−βt ,σ−βt <∞
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A preliminary estimate
The first step is to prove that the norm of velocity field is bounded by
the norm of the vorticity.

One has that:
u = K ∗ ω

where K in the periodic strip is given by:

Ku(x , y) =
1

8π2
sinh (2y)

sin2 (x) + sinh2 (y)

Kv (x , y) = − 1
8π2

sin (2x)

sin2 (x) + sinh2 (y)

Just the analogous in the periodic strip [−π, π[×R of what one would have in
the whole plane R2:

Ku =
1

2π
y

x2 + y2

Kv = − 1
2π

x
x2 + y2
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A preliminary estimate

Therefore we can write the velocity field in the following way:

u(x + iη1, y + iη2) =

∫ x+ π
2

x−π
2

∫ ∞
−∞

Ku(x − x ′, y − y ′)ω
(
x ′ + iη1, y ′ + iη2

)
dx ′dy ′

v(x + iη1, y + iη2) =

∫ x+π/2

x−π/2

∫ ∞
−∞

Kv (x − x ′, y − y ′)ω
(
x ′ + iη1, y ′ + iη2

)
dx ′dy ′

Proposition: Potential estimate for highly concentrated vorticity
Let u and v be expressed by the above formulas, and let ω ∈ B1,ρ,σ,µ.
Then u ∈ B1,ρ,σ, v ∈ B1,ρ,σ, and the following estimates hold:

‖u‖(α)
1,ρ,σ ≤ cε‖ω‖(α)

1,ρ,σ,µ

‖v‖(α)
1,ρ,σ ≤ cε‖ω‖(α)

1,ρ,σ,µ
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A preliminary difficulty

If one looks at the equation for the vorticity:

∂tω + u∂xω + v∂yω = 0

One sees that all terms are O(ε−1).

The cartesian reference frame
(x̂ , ŷ) is not the appropriate one
to handle the vortex layer. One
needs a reference frame which
can separate rapid O(ε−1) varia-
tions from slow O(1) variations.
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Comoving frame

We want to write the Euler equations in the comoving reference frame.
To be more precise we make the change of coordinates
(x , y , t)→ (ξ,Y , τ) defined as:

x = ξ + X (ξ, τ) , y = εY + ϕ(x(ξ,Y = 0, τ), τ) , τ = t .

where the shift factor X is defined as:

X (ξ, τ) =

∫ τ

0
u(x(ξ,Y = 0, τ ′),Y = 0, τ ′)dτ ′

Notice how the new coordinate system is not orthogonal. Defining the
rescaled vorticity ω̃ = εω

Euler equations:

∂τ ω̃ +
(u − uϕ)

[1 + Xξ(ξ, τ)]
∂ξω̃ +

1
ε

[
−∂ξϕ

(u − uϕ)

[1 + Xξ(ξ, τ)]
+ (v − vϕ)

]
∂Y ω̃ = 0 .
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Euler equation: final form
We use the incompressibility condition

∂ξu
1 + Xξ

+
1
ε

[
−

∂ξϕ

1 + Xξ
∂Y u + ∂Y v

]
= 0 .

to re-write the Euler equations in the form:

∂τ ω̃ +
1

[1 + Xξ(ξ, τ)]

[
(u − uϕ) ∂ξω̃ −

∫ Y

0
∂ξu dY ′ ∂Y ω̃

]
= 0

∂τϕ = vϕ

u − iv =
∑

n

∫ ∞
−∞

∫ ξ+π(2n+1)/2

ξ+π(2n−1)/2

ω̃(ξ′,Y ′)
Kεϕ(ξ − ξ′,Y − Y ′)

J(ξ′)dξ′dY ′

Kεϕ(ξ − ξ′,Y − Y ′) =
1

ξ − ξ′ + X(ξ)− X(ξ′) + i [ϕ(ξ + X)− ϕ(ξ′ + X ′) + ε(Y − Y ′)]

with J = 1 + ∂ξX(ξ, τ).
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The ”true” difficulty

The elliptic estimate ‖u‖(α)
1 ≤ c‖ω̃‖(α)

1 is not enough.
The problematic term is: ∫ Y

0
∂ξu dY ′ ∂Y ω̃

where a combination of the loss of one derivative in both terms ( ∂ξ
and ∂Y ) and of the linear growth (due to the integral of the velocity)
makes it impossible to estimate this term.

The hope is to separate the loss of the ξ derivative fom the linear
growth, proving that the velocity, outside the layer, converges to some
flow that we know a priori to be analytic.
A careful analysis of the asymptotic behavior of the velocity

ouside the layer: Y ≤ O(ε−1)

at large distance from the layer y →∞. Far field asymptotics
is needed.

M. Sammartino (University of Palermo) Vortex layers of small thickness Bordeaux 2016 29 / 54



The ”true” difficulty

The elliptic estimate ‖u‖(α)
1 ≤ c‖ω̃‖(α)

1 is not enough.
The problematic term is: ∫ Y

0
∂ξu dY ′ ∂Y ω̃

where a combination of the loss of one derivative in both terms ( ∂ξ
and ∂Y ) and of the linear growth (due to the integral of the velocity)
makes it impossible to estimate this term.
The hope is to separate the loss of the ξ derivative fom the linear
growth, proving that the velocity, outside the layer, converges to some
flow that we know a priori to be analytic.
A careful analysis of the asymptotic behavior of the velocity

ouside the layer: Y ≤ O(ε−1)

at large distance from the layer y →∞. Far field asymptotics
is needed.

M. Sammartino (University of Palermo) Vortex layers of small thickness Bordeaux 2016 29 / 54



One can see that the velocity field can be written:

u − iv = BR[γ, φ] +
1
2

[∫ ∞
Y

ω̃dY ′ −
∫ Y

−∞
ω̃dY ′

]
+R =

L+R

BR[γ, φ] =
1

2πi

∞∑
n=−∞

∫ ξ+π(2n+1)/2

ξ+π(2n−1)/2

γ(ξ′)

K0
φ(ξ − ξ′)

J(ξ′)dξ′ ,

as the sum of a local contribution L and a remainder R The local
contribution L has an evident physical meaning:

L = BR[γ, ϕ] +
1
2

[∫ ∞
Y

ω̃dY ′ −
∫ Y

−∞
ω̃dY ′

]

The remainder has a complicated expression

R(Ω, φ) =
∑

n

∫ ∞
−∞

∫ ξ+π(2n+1)/2

ξ+π(2n−1)/2
[Ω(ξ′,Y ′)− Ω(ξ,Y ′)]

[
1
Kεφ
− 1
K0
φ

]
J(ξ′)dξ′dY ′

However..
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Approximating the velocity field inside the layer

Proposition (behavior of the velocity inside the layer, Y ≤ 1/ε)

Let Ω ∈ B3
ρ,θ,µ and φ ∈ B3

ρ . Then the following estimate holds:

‖R(Ω, φ)(·,Y )‖(α)
1,ρ,σ ≤ cε(1 + Y )

The consequence is that, when Y < 1/ε:

u − iv = L(γ, ϕ) + O(ε)

Notice however how the above requires high regularity for the vorticity
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The far field approximation

Define the velocity generated by a vorticity concentrated on the curve
φ with intensity γ.

uf − iv f ≡ 1
2πi

∑
n

∫ ∞
−∞

∫ ξ+π(2n+1)/2

ξ+π(2n−1)/2

γ(ξ′)

ξ − ξ′ + i [φ− φ′ + εY ]
dξ′

Proposition (far field approximation)

Let Ω ∈ B2
ρ,σ.µ, φ ∈ B2,α

ρ with ‖φ‖(α)
2,ρ < 1/4, u ∈ B2

ρ,σ with ‖u‖2,ρ,σ < Γ

and τ such that τΓ < 1/5. Moreover let |Y | > ε−1. Then:

‖u + iv − (uf + iv f )‖(α)
1,ρ,σ ≤ c

[(
1
|Y |

+ f (Y )

)
+ O(e−µ/(2ε))

]
where f (Y ) ≥ 0 has a rate of decay in Y rapid enough to make it
integrable in Y .
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The asymptotic procedure
The fact that the estimate on R requires higher regularity does not
allow to solve the Euler equation all at once, but requires an
asymptotic procedure:

ω̃ = ω0 + εω1 ϕ = ϕ0 + εϕ1 u − iv = u0 − iv0 + ε (u1 − iv1)

where
u0 − iv0 = L(ω0, ϕ0)

and R(ω0, ϕ0), although generated by ω0, is included in the correction
ε (u1 − iv1).

The equation to zeroth order

∂τω0 +
1

1 + ∂ξX0

{[
Lu(ω0, ϕ0)− Lu(ω0, ϕ0)|Y =0

]
∂ξω0 −

∫ Y

0
∂ξLu(ω0, ϕ0)dY ′∂Yω0

}
= 0

∂τϕ0 = Lv ∣∣
Y =0
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Recall that:

L(ω0, ϕ0) = BR[γ0, ϕ0] +
1
2

[∫ ∞
Y

ω0dY ′ −
∫ Y

−∞
ω0dY ′

]

Threfore, to bound the hard term we need a priori bounds on γ0 and
ϕ0.

Take

∂τω0 +
1

1 + ∂ξX0

{[
Lu(ω0, ϕ0)− Lu(ω0, ϕ0)|Y =0

]
∂ξω0 −

∫ Y

0
∂ξLu(ω0, ϕ0)dY ′∂Yω0

}
= 0

and integrate in Y in ]−∞,∞[.

∂τγ0 − Lu(γ0, ϕ0)|Y =0
∂ξγ0

1 + ∂ξX0
+
∂ξ (γ0BRu[γ0, ϕ0])

1 + ∂ξX0
= 0 ;

∂τ
(
γ+

0 − γ
−
0

)
+

1
1 + ∂ξX0

{
1
2
γ0∂ξγ0t̃u

+
(
γ+

0 − γ
−
0

)
∂ξBR[γ0, ϕ0]

}
= 0
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The strategy is therefore:
Solve the above system to find γ0 and ϕ0. This givel the skeleton
of the layer, i.e. the position ϕ of the curve and the vortex strength
γ, but ignores how the vorticity is distributed.

Then solve the equation for ω0 and find the O(1) approximation of
the vorticity distribution. This ω0 is convected by the local velocity
L only.
Solve the equation for ω1 and find the O(ε) correction to the
vorticity distribution, as well the correction ϕ1.
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The key ingredients: the Cauchy estimates

1 The Cauchy estimate for the x-derivative of an analytic function:

‖∂xω‖(α)
1,ρ,σ.µ <

‖ω‖(α)
1,ρ′,σ.µ,

ρ′ − ρ
ρ′ > ρ

2 The Cauchy estimate for the ζ-derivative of an analytic function:

‖χ(Y )∂Yω‖
(α)
1,ρ,σ.µ <

‖ω‖(α)
1,ρ,σ′,µ

σ′ − σ
σ′ > σ

where χ(Y ) is a bounded function such that χ(Y ) = O(Y ) when
Y → 0.
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1 The Cauchy estimate for the x-derivative of an analytic function:

‖∂xω‖(α)
1,ρ,σ.µ <

‖ω‖(α)
1,ρ′,σ.µ,

ρ′ − ρ
ρ′ > ρ
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The key ingredients: a fixed point Theorem
3 ACK Theorem:

A Banach scale is a collection of Banach spaces {Bρ}ρ∈I such
that:

Bρ′ j Bρ if ρ′ > ρ

‖u‖ρ′ ≥ ‖u‖ρ
Suppose one has the differential problem in operator form:

∂tu = F (u, t) u(t = 0) = u0

Theorem (The Abstract Cauchy-Kowaleski Theorem)
Suppose the operator F is quasi-contractive:

‖F (u1, t)− F (u2, t)‖ρ′ ≤
‖u1 − u2‖ρ
ρ′ − ρ

ρ′ > ρ

Then, if the initial datum u0 ∈ Bρ0 , then there exists a β > 0 such that:

u(t) ∈ Bρ0−βt
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Convergence
One has to show that the motion of the curve ϕε converges, when the
thickness ε→ 0 to the motion predicted by BR equations.

Write the equation for the zero-th order vorticity intensity γ0 and ϕ0

∂τγ0 − Lu(γ0, ϕ0)|Y =0
∂ξγ0

1 + ∂ξX0
+
∂ξ (γ0BRu[γ0, ϕ0])

1 + ∂ξX0
= 0 ;

∂τϕ0 = Lv |Y =0
Then notice that

uϕ + ivϕ = L|Y =0 + O(ε)

and recall that

∂t = ∂τ −
1

1 + Xξ
∂ξ ∂x =

1
1 + Xξ

∂ξ

Translating these equations sback to the laboratory reference frame:

∂tγ0 + ∂x ( BRuγ0) = O(ε)

∂tϕ0 + uϕ∂xϕ0 = vϕ

which are, up to O(ε) the Birkhoff-Rott equations.
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The result

Theorem
Suppose the initial datum is of vortex-layer type, i.e. with an O(ε−1)
vorticity concentrated in a small layer (size O(ε)) close to a curve.
Suppose moreover that:

‖ω̃in‖(α)
1,ρ,σ,µ < R ‖ϕin‖(α)

2,ρ < 1/4

Then the vortex-layer structure is preserved for a time that does not
depend on ε.
Moreover the curve moves, to the leading order, according to the
Birlhoff-Rott equation.
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Discussion

In Existance de Nappes de Tourbillon en Dimension Deux,
J.Am.Math.Soc. 1991, Delort proved the following important result:

Delort, J. Am. Math. Soc. ’91
If ω0 is a bounded measure with positive singular part, then Euler
equations (in the weak form) admit as solution a bounded measure ωt ,
and u ∈ L∞loc

(
R,L2

loc(R2,R2)
)
.

However, despite of the title of the paper containing the words ”Vortex
sheet” he left unsolved the question whether his solution followed the
Birkhoff-Rott equation (maybe imposing more regularity).

Our result clarifies that, if the data are analytic this is the case.
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Discussion II
An important open problem is the justification of the VS model starting
from the Navier-Stokes equation in the zero viscosity limit.

The conjecture is:
The solution of the Navier-
Stokes solution, when the
initial datum is of the
vortex-layer type, should
admit the following asymp-
totic expansion:

uNS =

{
uI

0 +
√
νuI

1 + O(ν) close to ϕ
uE

0 +
√
νuE

1 + O(ν) away from ϕ

while the curve ϕ moves according to

∂tϕ = BR0 +
√
νBR1 + O(ν)
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Internal layer equations
In 2006 Caflisch and Sammartino derived, through a multiple scale
expansion, the following equations that rule the flow inside the vortex layer:

Internal layer equations

∂τu + Ẍ − 2ΩẎ − Ω2X − Ω̇Y +

u

[
∂su + ∂sẊ − Y∂sΩ− Ẏ

ρ

]
+ v∂Nu + ∂spL = ∂NNu

∂NpL = 0
∂su + ∂Nv = 0
u(s,N → ±∞, t) −→ u±(s, t)

Well posedness: Caflisch and Sammartino 2006
Suppose we have an analytic curve y = φ0(x) across which the velocity
field has a rapid tangential variation γ = U+−U− with U+ and U− analytic
and matching across the layer exponentially with a C2 regularity. For a
short time the equations ruling the fluid inside the layer (the internal layer
equations) are well posed.
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Correction to the BR equation

In 1994 Dhanak derived the following correction to the Birkhoff-Rott
equation:

Dhanak and Moore’s equations

∂Z ∗

∂t
= − i

2π
PV

∫
dΓ′

Z (Γ, t)− Z (Γ′, t)
−
√
νi
∂

∂Γ

[
δ2U3∂Z ∗

∂Γ

]
+ O(ν)

where U is the jump of the velocity and δ2 is the displacement
thickness:

δ2 =

∫ ∞
−∞

(u+ − u)(u− − u)

(u− − u−)2 dn

Dhanak’s equation requires the knowledge of the flow inside the V-L
which is given by the equation Caflisch and Sammartino derived.

M. Sammartino (University of Palermo) Vortex layers of small thickness Bordeaux 2016 43 / 54



Numerics I
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Numerics II

The vorticity distribution at various time for ν = 10−3. The white lines
represent the material curve. The roll up behaviour typical of the vortex sheet
motion is visible. Times 3.2,4.6,5.9 are the time in which a new winding form
in the material curve (the fourth winding forms at t = 7.3).
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Numerics III

The vorticity distribution at various time for ν = 10−4. The white lines
represents the material curve C
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Prandtl singularity versus BR singularity

Prandtl equations as well BR equation (try to) describe the limit
Re→∞ of the NS solution.
Both systems develop finite-time singulairity. (van Dommelen and
Shen singularity, recently rigorously constructed by Kukavica,
Vicol, Wang ’15, see also E and Engquist ’97 )

NS separation at the boundary: O(1) vortical structures form, and
the BL eventually detaches. −→ Prandtl singularity ??
NS solutions develop roll-up of the curve and an O(1) vortical core
forms. −→ BR singularity ??
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Streamlines for Prandtl and NS at different Re numbers.
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NS complex singularities, the impulsively started disk
Is Prandtl singularity related to the above phenomena leading to separation?
Gargano, Sammartino, Sciacca and Cassel J.Fluid.Mech ’14
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NS complex singularities, vortex layer motion

θ
0,8 1 1,2 1.287 1,4 1,6 1,8

θ
im

0

0.2

0.4

0.6

0.8

1
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zs

ξ2

ξ1

BR

ν = 10
−3

ν = 10
−4ν = 10

−4

ν = 5 · 10
−5

ν = 5 · 10
−5

ν = 10
−3

Two singularities are present. Both singularities seems to converge to
the BR singularity. Caflisch, Gargano, Sammartino and Sciacca ’15
preprint

The Birkhoff-Rott singularity seems to be ”the event” that causes the
destruction of the layer structure and the formation of a thick vortex
core.
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Numerics III
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Numerics IV
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Thank you for your attention!
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