
Dynamics of Ericksen-Leslie Model for Nematic
Liquid Crystal Flows with General Leslie Stress

Matthias Hieber

TU Darmstadt, Germany

Bordeaux

January 12, 2016

joint work with Jan Prüss



Liquid Crystals

Liquid Crystals

material that has properties between those of conventional liquids
and those of solids
e.g. liquid crystals flow like liquid, but molecules are oriented in
crystal like way
many different phases characterized by optical properties and type of
ordering
main phases : nematic, smectic and cholesteric

ordered, freely floating layer structure twisted structure



Nematic Liquid Crystals

Nematic versus crystal :

Nematic phase : molecules align along a direction



Some History

1888 : first discovery by chemists R. Reinitzer

1940 : synthesization of many liquid crystals

1933, 1958 : first continuum theory by Oseen and Frank for stationary
case : find energy densities obeying constitutive laws, e.g. frame
indifference (rigoroulsy, Virga 1994)

1949-86 : approach by Doi-Onsager

1962 : continuum theory for hydrodynamic flow by J. Ericksen

1968 : constitutive laws by F. Leslie

1991 : Nobel prize by P.-G. De Gennes, development of Q-tensor
model

1995 : first rigorous analysis for simplified versions of Ericksen-Leslie
model started by F. Lin and C. Liu

2013-2015 : well-posedness results for general Ericksen-Leslie model
by Liu, Wu, Xu and Wang, P. Zhang, Z. Zhang and Li assuming
various conditions on Leslie coefficients



The general Ericksen-Leslie Model in R3 : original form

ut + (u · ∇u) = div σ on (0,T ) × Ω,
div u = 0 on (0,T ) × Ω

d × (g + div( ∂W
∂(∇d) )−

∂W
∂d ) = 0 on (0,T ) × Ω,

|d | = 1 in (0,T ) × Ω
(u, d)(0) = (u0, d0) in Ω

u velocity, σ stress tensor, d director describing orientation

stress tensor σ = −pI − ∂W
∂dki

dkj + σLeslie

W = W (d ,∇d) Oseen-Frank energy functional given by
W = 1

2 [k1(div d)2 + k2|d × (∇× d)|2 + k3|d(∇× d)|2+
(k2 + k4)(tr (∇d)2 − (div d)2)] with elasticity constants ki

σLeslie = α1(dd : D)dd + α2dN + α3Nd + α4D + α5ddD + α6Ddd

D = D(u) = 1
2 [(∇u) + (∇u)T ]

N = dt + (u · ∇)d + V (u)d with V (u) = 1
2 [(∇u)− (∇u)T ]

g = λ1N + λ2Dd



Aims

strongly coupled, nonlinear system containing Navier-Stokes equations
provided stress tensor would be Newtonian one

understanding of model is not easy (at least for a mathematician)

Aim I : Understanding of EL-model from physical principles also in
non-isothermal situation : we use entropy principle

Aim II : Understanding of EL-model from analytical point of view :

a) local well-posedness in the strong sense, i.e. existence of a unique,
local strong solution,

b) determination of the set of all equilibria,
c) global existence of a strong solution provided the intitial data are close

to an equilibrium point in an appropriate norm,
d) convergence of solutions to the equilibrium set,
e) determination of the longtime behaviour of the solution.

start with simplified situation

general system reads as



General System






















∂tρ+ div(ρu) = 0 in
ρ(∂t + u · ∇)u +∇π = div S in
ρ(∂t + u · ∇)ǫ+ div q = S : ∇u − πdiv u + div(ρ∂∇dψDtd) in

γ(∂t + u · ∇)d − µVVd = Pd

(

div(ρ ∂ψ
∂∇d

)− ρ∇dψ
)

+ µDPdDd , in
ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in

boundary conditions : u = 0, q · ν = 0, νi∇∂idψd = 0 on ∂Ω
thermodynamical laws

ǫ = ψ + θη, η = −∂θψ, κ = ∂θǫ = −θ∂θψ, π = ρ2∂ρψ,
where ψ = ψ(ρ, θ, d ,∇d) is density of free energy,
constitutive laws



















S = SN + SE + S stretch
L + Sdiss

L , q = −α0∇θ − α1(d |∇θ)d .

SN = 2µsD + µbdiv u I , SE = −ρ ∂ψ
∂∇d

[∇d ]T,

S stretch
L = µD+µV

2γ n⊗ d + µD−µV
2γ d ⊗ n, n = µVVd + µDPdDd − γDtd ,

Sdiss
L = µP

γ (n⊗ d + d ⊗ n) +
γµL+µ

2
P

2γ (PdDd ⊗ d + d ⊗ PdDd) + µ0(Dd |d)d ⊗ d

D = 1
2 (∇u + [∇u]T ), V = 1

2(∇u − [∇u]T), P = I − d ⊗ d .
Oseen-Frank free energy density ψ given by
ψF = k1(div d)

2 + k2|d × (∇× d)|22 + k3|d · (∇× d)|2 + (k2 +
k4)[tr(∇d)2 − (div d)2]



The simplified Ericksen-Leslie model

For a bounded domain Ω ⊂ R
n, n ≥ 2, consider

ut −∆u + (u · ∇)u +∇π = −λdiv ([∇d ]T∇d) in (0,T ) × Ω,
dt + (u · ∇)d) = γ(∆d + |∇d |2d) in (0,T ) × Ω,

div u = 0 in (0,T ) × Ω,
|d | = 1 in (0,T ) × Ω

(u, ∂νd) = (0, 0) on (0,T ) × ∂Ω,
(u, d)(0) = (u0, d0) in Ω

where

u : (0,T ) × Ω → R
n : velocity

π : (0,T )× Ω → R : pressure

d : (0,T ) × Ω → R
n : macroscopic molecular orientation



Approaches and Analysis since 1995

Above system has been considered rigorously first by

Lin-Liu ’95 : the term |∇d |2d is replaced by f (d) = ∇F (d) for some
F .

in this case condition |d | = 1 cannot be preserved

Lin, Lin-Liu : replace this condition by Ginzburg-Landau energy
functional, i.e.
f (d) = ∇F (d) = ∇ 1

4ε2
(|d |2 − 1)2.

This yields Ginzburg-Landau approximating system

ut − ν∆u + (u · ∇)u +∇π = −λdiv ([∇d ]T∇d) in (0,T ) ×Ω,
dt + (u · ∇)d) = γ(∆d + 1

4ε2
(1− |d |2)d in (0,T ) ×Ω,

div u = 0 in (0,T ) ×Ω,
(u, ∂νd) = (0, 0) on (0,T )× ∂Ω,
(u, d)(0) = (u0, d0) in Ω



Approaches
Two type of approaches :

I Fluid-type approach : couple equation for d to methods for
Navier-Stokes

II Geometric approach by harmonic maps on spheres : couple fluid
equation to this geometric approach

Results (very far from complete)

I Lin, Lin-Liu ’95 : f of Ginzburg-Landau type : global weak solutions
for d = 2, 3, global strong solutions for n = 2

II Lin, Wang : existence results via heat flow of harmonic maps

I-II Wang ’12 : Ω = R
d : global well-posedness provided data are

small in BMO−1 × BMO

I Feireisl et al, ’12 : weak solutions for non-isothermal situation

I Hong, Li, Xin ’14 : solutions of Ginzburg-Landau approximating
system converge for ε→ 0 to original system



The Quasilinear Approach

Main idea : incorporate the term div ([∇d ]T∇d) into the quasilinear
operator A representing the left hand side of equation. More precisely, we
rewrite

ut − ν∆u + (u · ∇)u +∇π = −λdiv ([∇d ]T∇d) in (0,T )× Ω,
dt + (u · ∇)d) = γ(∆d + |∇d |2d) in (0,T )× Ω,

div u = 0 in (0,T )× Ω,
(u, ∂νd) = (0, 0) on (0,T ) × ∂Ω,

as

∂t

(

u

d

)

+

[

Aq PBq(d)
0 Dq

](

u

d

)

=

(

−Pu · ∇u

−u · ∇d + |∇d |2d

)

where

Aq Stokes operator

Dq Neumannn-Laplacian operator

P Helmholtz projection

[Bq(d)h]i := ∂idl∆hl + ∂kdl∂k∂ihl
thus : Bq(d)d = div([∇d ]T∇d)



Liquid Crystals as Quasilinear Evolution Equation

We rewrite the (simplified) Ericksen-Leslie system as

ż(t) + A(z(t))z(t) = F (z(t)), t ∈ J, z(0) = z0, (1)

with

state space X0 := Lq,σ(Ω)× Lq(Ω)
n, 1 < q <∞

Ω ⊂ R
d bounded domain with boundary ∂Ω ∈ C 2

the quasilinear part A(z) given by the tri-diagonal matrix

A(z) =

[

Aq PBq(d)
0 Dq

]

,

Stokes operator Aq = −P∆ in Lq,σ(Ω) with domain

D(Aq) = {u ∈ H2
q (Ω)

n : div u = 0 in Ω, u = 0 on ∂Ω}

Neumann-Laplacian Dq in Lq(Ω) with domain

D(Dq) := {d ∈ H2
q (Ω)

n : ∂νd = 0 on ∂Ω}.

Bq given by [Bq(d)h]i := ∂idl∆hl + ∂kdl∂k∂ihl
F (z) = (−Pu · ∇u,−u · ∇d + |∇d |2d)



Approach by maximal regularity

Local existence and regularity result for quasilinear problems

ż(t) + A(z(t))z(t) = F (z(t)), t ∈ J, z(0) = z0,

Let X1
d
→֒ X0 and J = [0, a] for some a > 0

Let z0 ∈ Xγ = (X0,X1)1−1/p,p for p ∈ (1,∞)
(A) A ∈ Cω(Xγ ;L(X0,X1)) and A(v) has maximal Lp-regularity for each

v ∈ Xγ

(F) F ∈ Cω(Xγ ;X0).

Then, there exists a > 0, such that above system admits a unique solution
z on J = [0, a] in the regularity class

z ∈ H1
p (J;X0) ∩ Lp(J;X1) →֒ C (J;Xγ) ∩ C ((0, a];Xγ)

the solution depends continuously on z0 and can be extended to a
maximal interval of existence J(z0) = [0, t+(z0)).

If z is such a solution on J = [0, a], then

tk [
d

dt
]kz ∈ H1

p (J;X0) ∩ Lp(J;X1), k ∈ N.

z is real analytic with values in X1 on (0, a).



Local Wellposedness

Summarizing, we obtain

Let 2/p + n/q < 1, z0 = (u0, d0) ∈ Xγ . i.e. u0, d0 ∈ B
2−2/p
q,p (Ω)n with

div u0 = 0 in Ω

Then there is a unique local solution z ∈ H1
p (J,X0) ∩ Lp(J;X1) on J.

Moreover,z ∈ C ([0, a];Xγ) ∩ C ((0, a];Xγ), i.e. the solution regularizes
instantly in time.

For each k ∈ N, tk [ d
dt
]kz ∈ H1

p (J;X0) ∩ Lp(J;X1) and
z ∈ Cω((0, a);X1).



Condition |d | = 1 is preserved

Condition |d | = 1 is preserved by the flow induced by the Ericksen-Leslie
model.
More precisely :

Let z ∈ H1
p (J;X0) ∩ Lp(J;X1) be a solution of Ericksen-Leslie model

on J = [0, a].

Then |d(t)| ≡ 1 for all t ∈ [0, a].

Proof fairly easy : if ϕ = |d |2 − 1, then

∂t |d |
2 = 2d · ∂td , ∆|d |2 = 2∆d · d + 2|∇d |2, ∇|d |2 = 2d · ∇d ,

multiplication with d yields






∂tϕ+ u · ∇ϕ = ∆ϕ+ 2|∇d |2ϕ in Ω
∂νϕ = 0 on ∂Ω,
ϕ(0) = 0 in Ω,

provided |d0| ≡ 1.

Uniqueness of this parabolic convection-reaction diffusion equations
yields ϕ ≡ 0, i.e. |d | ≡ 1.



Global Solutions

Consider the set of equilibria of (LCE) :

E = {z∗ ∈ X1 : A(z∗)z∗ = F (z∗)}.

and let A0 be the linearizaton of (LCE). Assume

(A) and (F) holds

u∗ is normally stable, i.e. 0 is semi-simple eigenvalue of A0, i.e.
N(A0)⊕ R(A0) = X0 and σ(A0) \ {0} ⊂ C+

Priniciple of Linearized Stability :
Then there exists ρ > 0 such that solution z with z0 ∈ BXγ

(0, ρ) exists on
R+ and converges exponentially to u∞ ∈ E in Xγ as t → ∞.



Dynamics of Solutions : Convergence to Equilibria

E0 = {0} × R
n is obviously an equilibria for (LCE)

linearization of (LCE) at z∗ ∈ E0 is given by ż + A∗z = f , z(0) = z0
in X0, with A∗ = diag(Aq ,Dq), D(A∗) = X1

u∗ ∈ E is normally stable, i.e. σ(A∗) \ {0} ⊂ [δ,∞) for δ > 0 and
ker (A∗) = {0} × R

n

Theorem :
Let p, q as above. Then for each equilibrium z∗ ∈ {0} × R

n there exists
ǫ > 0 such that a solution z(t) of (LCE) with initial data z0 ∈ Xγ ,
|z0 − z∗|Xγ

≤ ǫ exists globally and converges exponentially to
z∞ ∈ {0} × R

n in Xγ , as t → ∞



Lyapunov Functionals

Define energy by E := 1
2

∫

Ω[|u|
2 + |∇d |2]dx = Ekin + Epot

Calculation yields

d

dt
E(t) = −

∫

Ω
[|∇u|2 + |∆d + |∇d |2d |2]dx

Hence, E(t) is non-increasing along solutions

E is even a strict Ljapunov functional, i.e. strictly decreasing along
constant solutions.

In fact : if dE(t)/dt = 0 at some time, then ∇u = 0 and
∆d + |∇d |2d = 0 in Ω. Hence u = 0 and d satisfies the nonlinear
eigenvalue problem







∆d + |∇d |2d = 0 in Ω,
|d |2 = 1 in Ω,
∂νd = 0 on ∂Ω.

(2)



Determination of Equilibria

Lemma : if d ∈ H2
2 (Ω;R

n) satisfies above eigenvalue problem, then d

is constant in Ω.

Proof : explicit calculation and induction by n

Thus : energy functional E defined on Xγ is strict Ljapunov
functional for (LCE). Equilibria are given by

E = {z∗ = (u∗, d∗) : u∗ = 0, d∗ ∈ R
n, |d∗| = 1}

Summary : rather complete understanding of dynamics of simplified
model



Finite Time Blow Up for Dirichlet Boundary Conditions

Consider the case where d = (0, 0, 1) on ∂Ω, where Ω = open unit ball in
R
3.

Theorem (Huang, Lin, Liu, Wang, 2015)
a) There exists ε0 > 0 such that if u0 ∈ C∞

c,σ(Ω,R
3) and

d0 ∈ {d ∈ C∞(Ω,S2) : d = e on ∂Ω} satisfies that d0 is not homotopic to
the constant map e : Ω → S

2 relative to ∂Ω and

∫

Ω
(|u0|

2 + |∇d0|
2) ≤ ε2,

then short time smooth solution (u, π, d) subject to d = e on ∂Ω blows up
before T = 1.
b) There are examples of initial data (u0, d0) satisfying the above
assumptions.



Back to Full Model

how to understand the model and the many terms involved ?

how to proceed with the analysis ?

basic idea : try to understand the model from a thermodynamical
point of view, develop a thermodynamically consistent extension of
the model

this understanding is also the key for analytical investigations



Balance Laws for Mass, Momentum and Energy

The balance laws for mass, momentum and energy read as

∂tρ+ div(ρu) = 0 in Ω,

ρ(∂t + u · ∇)u +∇π = div S in Ω,

ρ(∂t + u · ∇)ǫ+ div q = S : ∇u − πdiv u in Ω,

u = 0, q · ν = 0 on ∂Ω.

ρ density, u velocity, π pressure, ǫ internal energy, S extra stress and
q heat flux.

This gives conservation of the total energy since

ρ(∂t + u · ∇)e + div(q + πu − Su) = 0 in Ω,

with e := |u|2/2 + ǫ energy density (kinetic and internal).

Integrating over Ω yields

∂tE(t) = 0, E(t) = Ekin(t) + Eint(t) =

∫

Ω
ρ(t, x)e(t, x)dx ,

provided q · ν = u = 0 on ∂Ω



Basic Laws from Thermodynamics
Ansatz : free energy ψ = ψ(ρ, θ, τ), τ to be specified later.
Then ǫ = ψ + θη internal energy,

η = −∂θψ entropy,

κ = ∂θǫ = −θ∂2θψ heat capacity.

classical case, Clausius-Duhem equation reads as

ρ(∂t+u·∇)η+div(q/θ) = S : ∇u/θ−q·∇θ/θ2+(ρ2∂ρ−π)(div u)/θ in Ω.

Hence, entropy flux Φη is given by Φη := q/θ
entropy production by

θr := S : ∇u − q · ∇θ/θ + (ρ2∂ρ − π)(div u)

boundary conditions employed yield that for total entropy N we have

∂tN(t) =

∫

Ω
r(t, x)dx ≥ 0, N(t) =

∫

Ω
ρ(t, x)η(t, x)dx ,

provided r ≥ 0 in Ω.
div u has no sign, hence π = ρ2∂ρψ, Maxwell’s relation.
this leads to S : ∇u ≥ 0 and q · ∇θ ≤ 0.



Summary

Summarizing : conservation of energy and total entropy is
non-decreasing provided these conditions, Maxwell and (BC) are
satisfied

Thus, these conditions ensure thermodynamical consistency of the
model.

example : classical laws due to Newton and Fourier :

S := SN := 2µsD + µbdiv u I , 2D = (∇u + [∇u]T), q = −α0∇θ.



Liquid Crystals
ψ = ψ(ρ, θ, τ) with τ = 1

2 |∇d |22
d orientation vector or director satisfying |d |2 = 1

energy flux is now given by

Φe := q + πu − Su − ΠDtd , Dt = ∂t + u · ∇d ,

where Π has to be modeled.

constitutive laws

S = SN + SE + SL, SE = −θλ∇d [∇d ]T, q = −α0∇θ − α1(d · ∇θ)d .

SN means Newton stress, SE the Ericksen stress and SL the Leslie
stress

the balance of entropy, i.e. the Clausius-Duhem equation reads as

ρ(∂t + u · ∇)η + divΦη = r ,

with Φη = q/θ and



Evolution of director d
θr =− q · ∇θ/θ + 2µs |D|22 + µb|div u|

2 + (ρ2∂ρψ − π)div u

+ (ρ∂τψ − λ)∇d [∇d ]T : ∇u + (Π− ρ∂τψ∇d) : ∇Dtd

+ SL : ∇u + (divΠ+ βd) · Dtd .

for some scalar function β.

entropy production r nonnegative provided

µs ≥ 0, 2µs + nµb ≥ 0, α0 ≥ 0, α0 + α1 ≥ 0.

The next five blue terms r have no sign, hence we require

π = ρ2∂ρψ, λ = ρ∂τψ/θ, Π = ρ∂τψ∇d

next, assume Leslie stress SL vanishes :

γDtd = div[(ρ∂τψ)∇]d + βd for some γ = γ(ρ, θ, τ) ≥ 0

condition |d |2 = 1 requires β = λ|∇d |2

this leads to the equation for d

γ(∂t + u · ∇)d = div[λ∇]d + λ|∇d |2d ,

basic equation for evolution of the director field d

entropy production : θr = −q · ∇θ/θ + 2µs |D|22 + µb|div u|
2 + 1

γ |a|
2
2,

where a = div[λ∇]d + λ|∇d |22d



Stretching and Vorticity

introduce stretching stress : set 2V = ∇u − [∇u]T

set n = µVVd + µDPdDd − γDtd , where
µV , µD , γ scalar functions of ρ, θ, τ , γ > 0

define stretch tensor

S stretch
L =

µD + µV
2γ

n⊗ d +
µD − µV

2γ
d ⊗ n.

entropy production becomes

S stretch
L : ∇u +Dtd · a =

1

γ
(|a|22 + (n + a) · (µVVd + µDPdDd − a)).

set n + a = 0, which yields equation for d including stretch

γ(∂td + u · ∇d) = div(λ∇)d + λ|∇d |22d + µVVd + µDPdDd .

it preserves the constraint |d |2 = 1

−N, where N is entropy, is strict Lyapunov functional as soon as
µs > 0, 2µs + nµb > 0, α0 > 0, α0 + α1 > 0, γ > 0



Additional Dissipation

add additional dissipative terms in the stress tensor of the form

Sdiss
L =

µP
γ

(n⊗d+d⊗n)+
γµL + µ2P

2γ
(PdDd⊗d+d⊗PdDd)+µ0(Dd |d)d⊗d ,

Sdiss
L is symmetric

adding these terms will be thermodynamically consistent provided
entropy production ensures that the total entropy production remains
nonnegative

total entropy production becomes

θr = [α0|∇θ|
2
2 + α1(d |∇θ)

2]/θ + 2µs |D|22 + µb|div u|
2

+
1

γ
|Pddiv(λ∇)d − µPPdDd |

2
2 + µL|PdDd |

2
2 + µ0(Dd |d)

2.

for thermodynamical consistency need only

α0, α0 + α1 ≥ 0, µs , 2µs + nµb ≥ 0, µ0, µL ≥ 0, γ > 0.



General Model : compressible fluid, isotropic elasticity






















∂tρ+ div(ρu) = 0 in Ω,
ρ(∂t + u · ∇)u +∇π = div S in Ω,
ρ(∂t + u · ∇)ǫ+ div q = S : ∇u − πdiv u + div(λ∇dDtd) in Ω,

γ(∂t + u · ∇)d − µVVd = div[λ∇]d + λ|∇d |2d + µDPdDd , in Ω,
ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in Ω.

boundary conditions : u = 0, q · ν = 0, νi∇∂idψd = 0 on ∂Ω

thermodynamical laws

ǫ = ψ + θη, η = −∂θψ, κ = ∂θǫ = −θ∂θψ, π = ρ2∂ρψ,

where ψ = ψ(ρ, θ, τ) with τ = 1
2 |∇d |2 density of free energy,

constitutive laws


















S = SN + SE + S stretch
L + Sdiss

L , q = −α0∇θ − α1(d |∇θ)d .
SN = 2µsD + µbdiv u I , SE = −λ∇d [∇d ]T,

S stretch
L = µD+µV

2γ n⊗ d + µD−µV
2γ d ⊗ n, n = µVVd + µDPdDd − γDtd ,

Sdiss
L = µP

γ (n⊗ d + d ⊗ n) +
γµL+µ

2
P

2γ (PdDd ⊗ d + d ⊗ PdDd) + µ0(Dd |d)d ⊗ d



General Model : Non-Isotropic Elasticity

free energy ψ = ψ(ρ, θ, d ,∇d)

Ericksen stress tensor SE = −ρ ∂ψ
∂(∇d) [∇d ]T

equation for d : γDtd = Pda + µVVd + µDPdDd

a = ∂i(ρ∇∂idψ)− ρ∇dψ























∂tρ+ div(ρu) = 0 in
ρ(∂t + u · ∇)u +∇π = div S in
ρ(∂t + u · ∇)ǫ+ div q = S : ∇u − πdiv u + div(ρ∂∇dψDtd) in

γ(∂t + u · ∇)d − µVVd = Pd

(

div(ρ ∂ψ
∂∇d

)− ρ∇dψ
)

+ µDPdDd , in
ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in

boundary conditions, thermodynamical and constitutive laws as before

S = SN + SE + S stretch
L + Sdiss

L and SE = −ρ ∂ψ
∂(∇d) [∇d ]T.



Analysis : Case of Incompressible Fluids

case of incompressible fluids, isotropic elasticity : ρ = const, τ = 1
2 |∇d |2 :































ρDtu +∇π = div S in Ω,
div u = 0 in Ω,

ρDtǫ+ div q = S : ∇u + div(λ∇dDtd) in Ω,
γDtd − µVVd − div[λ∇]d = λ|∇d |2d + µDPdDd in Ω,
u = 0, q · ν = 0, ∂νd = 0 on ∂Ω,

ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in Ω.

(3)
thermodynamical laws as above

constitutive laws for S as above

convenient to write the equation for energy as an equation for the
temperature θ :

ρκDtθ+div q = (S−(1−θ∂θλ/λ)SE ) : ∇u+div(λ∇)d ·Dtd+(θ∂θλ)∇d : ∇Dtd

third order terms in d appear !

Hence : mixed order system



Approach via Quasilinear Evolution Equations

define setting for principal variable v = (u, θ, d)
v ∈ X0 where ground space X0 := Lq,σ(Ω)× Y0 with Lq(Ω)× H1

q (Ω)
for 1 < p, q <∞
regularity space
X1 = {v ∈ H2

q (Ω) ∩ Lq,σ(Ω) : u = 0 on ∂Ω} × Y1 with
Y1 = {(θ, d) ∈ H2

q (Ω)× H3
q (Ω) : ∂νθ = ∂νd = 0 on ∂Ω}

consider solutions within the class

E (J) := v ∈ H1
p (J;X0) ∩ Lp(J;X1),

where J = (0, a) with 0 < a ≤ ∞
if 1 > 1/2 + (n + 2)/2q, then time-trace Xγ of E (J) is

Xγ = {v ∈ B
2(1−1/p)
qp (Ω)2n∩X0 : d ∈ B

1+2(1−1/p)
qp , u = ∂νθ = ∂νd = 0 on ∂Ω}

state manifold : SM = {v ∈ Xγ : θ(x) > 0, |d(x)|2 = 1 in Ω}
rewrite Ericksen-Leslie system as quasi-linear evolution equation in X0

of the form

v̇ + A(v)v = F (v), t > 0, v(0) = v0,



Main Result : Incompressible Fluid, Isotropic Elasticity
Let J = (0, a), 1 < p, q <∞, 1 > 1/2 + 1/p + n/2q

let ψ ∈ C 3 and α, µj , γ ∈ C 2

assume µs > 0, α > 0, µ0, µL ≥ 0, κ, γ > 0, λ, λ+ 2τ∂τλ > 0

Theorem :

(Local Well-Posedness) :

◮ Let v0 ∈ Xγ . Then for some a = a(v0) > 0, there is a unique solution

v ∈ H1
p,µ(J,X0) ∩ Lp,µ(J;X1),

◮ Moreover, v ∈ C ([0, a];Xγ) ∩ C ((0, a];Xγ), i.e. the solution regularizes
instantly in time.

◮ solution exists on a maximal time interval J(v0) = [0, t+(v0)).
◮ |d(·, ·)|2 ≡ 1, E(t) ≡ E0, and −N is a strict Lyapunov functional.

(Stability of Equilibria) :
Any equilibrium v∗ ∈ E of above system is stable in Xγ in the sense
that for each v∗ ∈ E there is ε > 0 such that if v0 ∈ SM with
|v0 − v∗|Xγ,µ

≤ ε, then the solution v with initial value v0 exists
globally in time and converges at an exponential rate in Xγ to some
v∞ ∈ E .



Key Ideas of Proof : Part I
Step 1 : Linearization :

linearize system at initial value v0 = [u0, θ0, d0]
T and drop all terms of

lower order. This yields the principal linearization






Lπ(∂t ,∇)vπ = f in J × Ω,
u = ∂νθ = ∂νd = 0 on J × ∂Ω,

u = θ = d = 0 on {0} × Ω.

here vπ = [u, π, θ, d ]T unknown and f = [fu , fπ, fθ, fd ]
T given data.

differential operator Lπ(∂t ,∇) is defined via its symbol Lπ(z , iξ)
given by

Lπ(z , iξ) =









Mu(z , ξ) iξ 0 izR1(ξ)
T

iξT 0 0 0
0 0 mθ(z , ξ) −izθ0ba(ξ)

−iR0(ξ) 0 −iba(ξ) Md (z , ξ)









,

with b = ∂θλ, and λ1 = ∂τλ.
parabolic part

L(z , iξ) =





Mu(z , ξ) 0 izR1(ξ)
T

0 mθ(z , ξ) izθ0ba(ξ)
−iR0(ξ) iba(ξ) Md (z , ξ)



 . (4)

entries of these matrices are given by



Symbols

mθ = ρκz + α|ξ|2, a(ξ) = ξ · ∇d0

Md = γz + λ|ξ|2 + λ1a(ξ)⊗ a(ξ) = md (z , ξ) + λ1a(ξ)⊗ a(ξ)

R0 =
µD + µV

2
P0ξ ⊗ d0 +

µD − µV
2

(ξ|d0)P0

R1 = (
µD + µV

2
+ µP)P0ξ ⊗ d0 + (

µD − µV
2

+ µp)(ξ|d0)P0

Mu = ρz + µs |ξ|
2 + µ0(ξ|d0)

2d0 ⊗ d0 + a1(ξ|d0)P0ξ ⊗ d0

+ a2(ξ|d0)
2P0 + a3|P0ξ|

2d0 ⊗ d0 + a4(ξ|d0)d0 ⊗ P0ξ.

Here P0 = Pd0 = I − d0 ⊗ d0, and aj are coefficients.



Part II : Maximal Lp-Regularity
Linearized system for L admits a unique solution vπ = [u, π, θ, d ]T with

(u, θ) ∈ 0H
1
p(J; Lq(Ω))

n+1 ∩ Lp(J;H
2
q (Ω))

n+1,

π ∈ Lp(J; Ḣ
1
q (Ω)),

d ∈ 0H
1
p(J;H

1
q (Ω))

n ∩ Lp(J;H
3
q (Ω))

n,
if and only if

(fu , fθ) ∈ Lp(J; Lq(Ω))
n+1, fd ∈ Lp(J;H

1
q (Ω))

n, fπ ∈ 0H
1
p(J;H

−1
q (Ω)) ∩ Lp(J;H

1
q (Ω)).

to prove this, set J = diag(I , 1/θ0, zI )

show that symbol J̄L is accretive for Re z > 0, i.e. the associated
system is strongly elliptic.

note we do not need any structural conditions on coefficients

How to deal with mixed order situation ?

perform a Schur reduction to reduce to symbol depending only on u.

resulting generalized Stokes symbol for (u, π) is strongly elliptic

apply maximal regularity result for non-Newtonian fluids to obtain
maximal regularity for Rn.

half space : verify Lopatinskii-Shapiroo condition

domains : localization prodecure



The subsystem for w := (θ, d)
Consider subsystem associated with w := (θ, d). The principal part of
the linearization becomes

∂tw +A(w0,∇)w = f in Ω,

∂νw = 0 on ∂Ω,

w(0) = w0 in Ω.

where A = A(w0,∇) is given by

A =

[

−a0∆− a1∇dT
0 ∇d0 : ∇

2, −b0∇d0 : (λ0∆+ ∂τλ0[∇d0]
T∇d0 : ∇

2)∇

b1[∇d0]
T∇, −γ−1

0 (λ0∆+ ∂τλ0[∇d0]
T ⊗∇d0 : ∇

2).

]

.

Here κ0 = κ(θ0, τ0) etc., and

a0 =
α0

ρκ0
, a1 =

[∂τ ǫ0]
2

θ0γ0κ0
, b0 =

∂τ ǫ0
γ0κ0

, b1 =
∂τ ǫ0
γ0θ0

.

A(w0,∇) : second order diagonal, but third and first order
off-diagonal

This is a mixed-order problem



Maximal Regularity for Subsystem in

Y0 := Lq(Ω)× H
1
q(Ω;R

n)

reduced variable wred = [θ, dred ]
T where dred = c(ξ) · d yields reduced

symbol Ared (ξ)

Ared (ξ) =

[

a0|ξ|
2 + a1|c(ξ)|

2 −ib0(λ0|ξ|
2 + ∂τλ0|c(ξ)|

2)

ib1|c(ξ)|
2 λ0

γ0
|ξ|2 + ∂τλ0

γ0
|c(ξ)|2

]

.

now : reduced symbol is homogeneous of second order and normally
elliptic in the sense that σ(Ared (ξ)) ⊂ (0,∞) for each ξ 6= 0.

hence : reduced equation has maximal regularity

regain d by solving

∂td−
λ0
γ0

∆d = f 1d := fd+i
∂τλ0
γ0

c(∇)dred−b1c(∇)θ, t > 0, d(0) = 0,

with d ∈ 0H
1
p(J;H

1
q (R

n;Rn)) ∩ Lp(J;H
3
q (R

n;Rn))

for f 1d ∈ Lp(J;H
1
q (R

n;Rn)).



Part III : Local Existence

Rewrite Ericksen-Leslie system as quasi-linear evolution equation

v̇ + A(v)v = F (v), t > 0, v(0) = v0,

v = (u, θ, d) and Helmholtz projection P is applied to the equation
for u

base space X0 := Lq,σ(Ω)× Y0 with Y0 = Lq(Ω)× H1
q (Ω)

quasilinear theory : for some a = a(z0) > 0, there is a unique solution

z ∈ H1
p (J,X0) ∩ Lp(J;X1), J = [0, a],

of EL-system on J.

Moreover, t[ d
dt
]z ∈ H1

p (J;X0) ∩ Lp(J;X1)

|d(t, x)|2 ≡ 1, E(t) ≡ E0, and −N is a strict Lyapunov functional

Ericksen-Leslie system generates a local semi-flow in its natural state
manifold SM.



Part IV : Dynamics

Linearization of (EL)-System at an equilibrium v∗ = (0, θ∗, d∗) is
given by A∗ = A(v∗) in X0.

This operator has maximal Lp-regularity, it is the negative generator
of a compact analytic C0-semigroup, and it has compact resolvent.

σ(A∗) consists only of countably many eigenvalues of finite
multiplicity, which have all positive real parts, hence are stable, except
for 0.

The eigenvalue 0 is semi-simple. Its eigenspace is given by

N(A∗) = {(0, ϑ, d) : ϑ ∈ R, d ∈ R
n},

hence it coincides with the set of constant equilibria Ē

apply generalized principle of linearized stability, to prove the
stability assertion



Case of Compressible Fluids
Recall that compressible models reads as






















∂tρ+ div(ρu) = 0 in Ω,
ρ(∂t + u · ∇)u +∇π = div S in Ω,
ρ(∂t + u · ∇)ǫ+ div q = S : ∇u − πdiv u + div(λ∇dDtd) in Ω,

γ(∂t + u · ∇)d − µVVd = div[λ∇]d + λ|∇d |2d + µDPdDd , in Ω,
ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in Ω.

with boundary conditions, thermodynamical and constitutive laws as above

approach is now much more involved, due to the hyperbolic part of
the system
local well-posedness and also the stability part are proven by
introducing Lagrangian coordinates
in contrast to incompressible case, here we cannot use d ∈ H3

q , as
the density ̺ does not have enough regularity.
solution space in now given by

ρ ∈ H1
p (J;H

1
q (Ω)), (u, θ) ∈ H1

p (J; Lq(R
n+1) ∩ Lp(J;H

2
q (R

n+1)),

while the director lies in

d ∈ H2
p (J; 0H

−1
q (Ω;Rn)) ∩ H

1/2
p (J;H2

q (Ω;R
n)) →֒ H1

p (J;H
1
q (Ω;R

n)),



Compressible case : strong well-posedness
Let v = (̺, u, θ, d).

state space Xγ := H1
q (Ω)× B

2−2/p
qp (Ω;Rn+1)× H2

q (Ω;R
n)

state manifold SM = {v ∈ Xγ : ̺, θ > 0, |d |2 = 1 in Ω, div(λ∇)d ∈

B
1−2/p
qp (Ω;Rn)u = α0∂νθ + α1(d |ν)∂dθ = ∂νd = 0 on ∂Ω}

manifold of equilibria :
E = {v∗ = (̺∗, 0, θ∗, d∗) ∈ R

2n+2 : ρ∗, θ∗ > 0, |d∗|2 = 1}

Theorem
Regularity assumptions on coefficients as above. Then :

compressible EL-system generates a local semi-flow in SM, solution
exists on a maximal time interval [0, t+(v0))

total mass M and total energy E are constant and negative total
entropy −N is a strict Lyapunov functional.
any equilibrium v∗ ∈ E of EL-system is stable in SM
for each v∗ ∈ E there is ε > 0 such that if v0 ∈ SM with
|v0 − v∗|Xγ

≤ ε, then the solution v of EL-system with initial value v0
exists globally and converges at an exponential rate in SM to some
v∞ ∈ E .



Thank you very much


