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The problem in a glance

Settings

@ w is the obstacle immersed in a perfect fluid.
o (2 is the domain of the fluid.

@ ¢ is the harmonic potential of the fluid in 2 and then Vi is the
fluid velocity field.

o The slip boundary condition on « reads: d,¢ = 0.



The problem in a glance

Problem statement
Knowing the Neumann-to-Dirichlet map:

Opp € H3(T') > ¢ € H2(T),

how to reconstruct the obstacle w?



The problem in a glance

Restatement in terms of the stream function
The stream function ¥ (¢ + 2 is holomorphic in ) sastifies:

—AyY=0 inQ
Y=c onv
Yv=f onl

where the constant ¢ € R is such that:
/ Dt = 0.
.

Problem statement
Knowing the Dirichlet-to-Neumann (DtN) map:

feH* () 0,0 € H 2(T),

how to reconstruct the obstacle w?



Calderdén’s conductivity problem

—div(eVu) =0 in Qy C R?,
u=f onl.

Problem statement
Knowing the Dirichlet-to-Neumann (DtN) map:

fEeHT) — duec H 3 (D),

how to reconstruct the piecewise constant conductivity o?



Calderdén’s conductivity problem

We recover the initial problem by letting o1 — +oo (Highly
conducting inclusion):
—Au=0 1in Q,
u=f onl,

w=c on-,

where c is the constant such that: / Opu = 0.
v



Bibliographical comments

Identifiability

Only one measurement required (straightforward) see e.g.
Alessandrini & Rondi, 2001, Kress, 2004.

Stability

Logarithmic stability is best possible; see e.g. Alessandrini (IP, 2007)
or Uhlmann (IP, 2009) and references therein.



Bibliographical comments

Reconstruction

Iterative methods
@ Optimization methods: Borcea, Dobson, Hanke, Santosa,...
o Quasi-reversibility + Level Sets: Bourgeois et al....

e Conformal mapping method: Akduman, Haddar, Kress,...

Non iterative methods
e Nachman’s direct reconstruction method: Siltanen et al.

o Indicator functions:

o Enclosure/probe method: Ikehata et al., Nakamura,
Potthast,...

o LSM /Factorization methods: Briihl & Hanke, Cakoni,
Colton, Kirsch, Haddar, Kress,...

o Asymptotic methods & Generalized Polya-Szego Tensors:
Ammari et al., Vogelius et al., Kanget al...



Background on single layer potential (1/3)

For every given density ¢ on I' = 912, the single layer potential is
defined by

Irq(x /G:zc— y)do,, z¢T,

where 1
G(z) = “on log ||

denotes the fundamental solution of —A in R2.



Background on single layer potential (2/3)

e 71 is harmonic in R? \ T.
e 71 satisfies the following jump conditions:
[“1q]ir = 0, [0n(S79)Ir = G-

@ The trace of the single layer potential, denoted by Sr defines a
bounded operator from H_%(F) to H? (1).
We denote:
q=5Srq.

o If Cap(T') # 1, Sy is an isometry provided H~2 (') and Hz (T)
are endowed with the norms:

Igl1%, = (g,Sra) = (Sp @, a) = llall3-



Background on single layer potential (3/3)

o The equilibrium density er € H -3 (T") is the unique density such
that:
Srer is constant on I" and (ep, 1) = 1.

@ The operator Sr defines an isometry between the spaces

~

Hr):={ge HHT) : (@ 1) =0},
H(D) = {q € HE(T) : @r,q) =0}
We introduce the projections:
Ip: H?(T') — H(T') and Iip : H~2(I') — H(I).
o The following equivalence holds for ¢ € Hz (T):
e HI) & [ [VADE < +oc.

In this case:

a2y = ol = [ 19D



Back to the DtN

o The DtN operator is by assumption valued in H (T) since:

/8nu=—/8nu:0.
r v

We will consider its restriction to H(I') and we denote:

Ay f € HI) — Oyul. € H().

@ When w = & (there is no obstacle), we denote the DtN by Ap.

Most of time, we will consider the operator:

R:= SF(AA/ — Ao) : H(F) — H(F)



The measurements
Let us define the harmonic polynomials:
ZM=TMpz™ and Zp :=Mpz™, (m>1),

and recall that R := Sp(A, — Ag) : H(I') — H(I).

Proposition
The operator Id + R : H(T') — H(T') is invertible and we can define
the complex sequences:

1 1=l om
Hm = §<R(Id +R)"'Zp, 27 >%,F7

1
v =5 (ROA+R) 2, 2 p, (m21).

e R is known, so are the sequences (fi,m)m>1 and (V) m>1-

o The numbers i, and v,, are closely related with the Generalized
Polya-Szego Tensors appearing in the asymptotic expansion of
the DtN for small inclusions (see Ammari et al.).



The conformal mapping

The boundary v can be described through the conformal mapping
that maps the exterior of the unit disk onto the exterior of w (a1 > 0):

Gy iz a1z +ag+ Z a_mz ™.
m>1
In this description:
@ a; > 0 is the (logarithmic) capacity of .

@ qg is the conformal center.

The problem of reconstructing the cavity w is equivalent to the
problem of recovering the complex sequence (ax)k<i-



Explicit reconstruction formula

Theorem
We have p1 > 0 and the coefficients ax can be computed by means of
the following formulae:

1
,u1)5 H2
ap = =— ag = —
! (27T 0 2u
p2\
Oy = 11 2 Z Ca (2) vitug?ovgm, o omo 21,
€A, s

where
A, i={a e N ag+ 201 +3az + ...+ (m+ Day, = (m+1)}

and
(_1)‘0‘|+1 (271-)%7(0‘14"”4’5*7")

200m lai2cz | mam

Cy =




Algorithm

1.

ot

The space H(T') is approximated by the finite dimensional space
spanned by the family {2, Z;n, m=1,..., M} where

Zrt=1Ipz™ and ?? =1Irz™, (m>=1).

. We compute the 2M x 2M matrix Q,; whose entries are:

(Zr, 2y p and (2, 27 1< m,m' <M.

i
27

. We compute the 2M x 2M matrix Rj; whose entries are:

(Zr,RZ{); r and (2", RZ[") 1< m,m' <M.

1p
2

. An approximation of the vector (u1,v1, ..., fiar, Var) is given by

the first raw of the matrix product:

Qu(Qu +Ry) 'Ry

. We use the formulae of the Theorem to compute the coefficients

a1, @0, @—1,...,0-M-



Numerical results

Figure : Examples of reconstructions with 8 (complex) coefficients.
Computations are made with the Matlab Laplace boundary integral
equation solver IES (B. Pingon and A. M.).

DA



Main ingredients of the proof

Step 1 Getting rid of the outer boundary I'
The operator K := (Id + R) IR satisfies, for every f,g € H(T):

(Kf.g)yr = (0,(F ). IL(Fr0)) -

Step 2 A suitable choice of test functions
Specifying f and g to be the harmonic polynomials we get:

(KZP,ZF')y p = (20 20)

<KZItnﬂz;n >%,F = <Z:,nv?ym >%,'y'

Step 3 Complex analysis tools
Using the conformal mapping we can compute:

<Z$’Z*TI>%,7 and (Z;”,?;n >%,v = function of aj (k < 1).

The identity above can be inverted:

ar = function of (27", Z1), and (Z",Z.), . (m > 1).
———

Vm Hm



Boundary integral formulation (step 0)

Theorem
1
For all f € H2(T'), there exists a unique (u,c) € H*(2) x R such that:

—Au=0 in§,
u=f onl,

u=c on-,

/8nu =0.
¥

Moreover, u admits a single layer representation
u=91q+ D,
where g€ H=2(T') and p € H™2(y) satisfy:
g+ (SHpr=f (@),

(yFE]\)”/ +p=c ('7)



Factorization of the DtN (step 1)
Lemma ~ R
If fe H(T) then p € H(y) and g€ H(T).
Applying the projections IIr and Il to the system:
¢+ (SHSpr=1f (D)
(1D +p=c  (7),
we get:

Kig+p=0  (v),
where the operators K™ and K~ are defined by:

{ g+Kp=f (D),

K+p = HF(y’yﬁ)\F K q:= H’y(yl“(?)l'y'



Factorization of the DtN (step 1)

Proposition
The operators K* enjoy the following properties:
o KT (respectively K™) is compact from H(v) onto H(T")
(respectively from H(I') onto H(v)).

e Forall p,ge H(y) x H(I'):
<K+p7 q>%,1—‘ = <pa K7Q>%,'~/'
e K" : H(y) = H(T) and K~ : H(T') — H(~) are contraction

operators:
K| < 1.



Factorization of the DtN (step 1)
Set now

K:=K"'K™ : H(T) — H(T)
and recall that:
R:=Sr(Ay —Ag): HT) — H(T).
Theorem (Factorization)
The following identities hold true:
R = (Id — K)7!K,

or equivalently
K=Id+R)"'R.

In other words, the knowledge of A, (and Ag) entirely determines the
operator K .



Factorization of the DtN (steps 1-2)

The identity
(Id + R)"'R = K"K~

reads equivalently for f,g € H(T):

<(Id+ R)ilRfa g> r— <K+Kifag>%,l1 = <K7.f7 KiQ)%,»ya

and by definition:
(K™ f.K7g)

In particular, for the harmonic polynomials, we obtain:

~ = <H~/(f5ﬂFf)7HW(ng)> ~*

1 1
237 257

(K2, 21" ) o p = (KT 20, K721, = (27, 2T")

1.
PR



Complex analysis (step 3)
The next (and last) step is to relate the data (2", ZZ/"»;W to the
unknown geometry.
By definition:

vy v
¥
where
Zh = [3n(=5”vz’7”)] L,'
The exterior Dirichlet problem:
—Au=0 in R?\ @

u=2zr on vy

u(@)| = O(jz| ™) as [a] = +o0,

can be explicitly solved by means of the conformal mapping that
maps the exterior of the unit disk onto the exterior of w (a3 > 0):

Gy iz a1z +ag+ E a_mz" ™.
m>1



Complex analysis (step 3)

In particular, we can prove:

Lemma
For every m > 1:

1 m T —it gm0
Hm = §<Z’Y 7Z’y>%ﬁ/ - al/ € t('b’Y (e")dt,
and

Vyp 1= 7<Z;n72’1>%7’v:a1/ eit(b:l(eit)dt

—T

=27aq E oy - - Qq,, -

jal=—1

These equalities can be inverted and provide the reconstruction
formulae of the Theorem.



Comments

o As a Corollary of the main Theorem, we deduce that the
coeflicients ay depend smoothly on the DtN map R.

o We use the family {Zg%?:b m > 1} (harmonic polynomials) as
test functions. Other choices are possible as e.g.

Z0(-—r) withr € C.

This choice impacts the quality of the reconstruction.

o The factorization result generalizes to 3D and/or multiple
obstacles.



Further numerical tests: Influence of the shift r

Figure : Examples of reconstructions with 8 (complex) coefficients.
Computations are made with the Matlab Laplace boundary integral
equation solver IES (B. Pingon and A. M.).
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Further numerical tests: Influence of the shift r
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Further numerical tests: Noisy data

0.8

Figure :

Reconstruction using aq, ..

.,a—4 with 5% of noise.



Further numerical tests: Influence of the outer boundary







Identifiability

§a!

Straightforward arguments requiring only
one (non-constant) measurement:

o Assume that two cavities give the
same measurement.

o Define ¢ = 11 — 5.

e AYy=0and 9,y =¢p=0o0nT,
hence ¢ = 0.

@ ¢y =co =cand ¥y =con ;. Then
’(/)QZCinQ.
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