# Reconstruction of an immersed obstacle from boundary measurements 

Alexandre Munnier Karim Ramdani




Bordeaux, January 2016

## The problem in a glance



## Settings

- $\omega$ is the obstacle immersed in a perfect fluid.
- $\Omega$ is the domain of the fluid.
- $\varphi$ is the harmonic potential of the fluid in $\Omega$ and then $\nabla \varphi$ is the fluid velocity field.
- The slip boundary condition on $\gamma$ reads: $\partial_{n} \varphi=0$.


## The problem in a glance



Problem statement
Knowing the Neumann-to-Dirichlet map:

$$
\partial_{n} \varphi \in H^{-\frac{1}{2}}(\Gamma) \mapsto \varphi \in H^{\frac{1}{2}}(\Gamma),
$$

how to reconstruct the obstacle $\omega$ ?

## The problem in a glance

Restatement in terms of the stream function
The stream function $\psi(\varphi+i \psi$ is holomorphic in $\Omega)$ sastifies:

$$
\begin{aligned}
-\Delta \psi & =0 & & \text { in } \Omega \\
\psi & =c & & \text { on } \gamma \\
\psi & =f & & \text { on } \Gamma
\end{aligned}
$$

where the constant $c \in \mathbb{R}$ is such that:

$$
\int_{\gamma} \partial_{n} \psi=0
$$

Problem statement Knowing the Dirichlet-to-Neumann (DtN) map:

$$
f \in H^{\frac{1}{2}}(\Gamma) \mapsto \partial_{n} \psi \in H^{-\frac{1}{2}}(\Gamma),
$$

how to reconstruct the obstacle $\omega$ ?

## Calderón's conductivity problem



Problem statement
Knowing the Dirichlet-to-Neumann (DtN) map:

$$
f \in H^{\frac{1}{2}}(\Gamma) \mapsto \partial_{n} u \in H^{-\frac{1}{2}}(\Gamma),
$$

how to reconstruct the piecewise constant conductivity $\sigma$ ?

## Calderón's conductivity problem

We recover the initial problem by letting $\sigma_{1} \rightarrow+\infty$ (Highly conducting inclusion):

$$
\begin{array}{rll}
-\Delta u=0 & & \text { in } \Omega, \\
u & =f & \\
\text { on } \Gamma, \\
u & =c & \\
\text { on } \gamma,
\end{array}
$$

where $c$ is the constant such that: $\int_{\gamma} \partial_{n} u=0$.

## Bibliographical comments

## Identifiability

Only one measurement required (straightforward) see e.g. Alessandrini \& Rondi, 2001, Kress, 2004.

## Stability

Logarithmic stability is best possible; see e.g. Alessandrini (IP, 2007) or Uhlmann (IP, 2009) and references therein.

## Bibliographical comments

## Reconstruction

Iterative methods

- Optimization methods: Borcea, Dobson, Hanke, Santosa,...
- Quasi-reversibility + Level Sets: Bourgeois et al....
- Conformal mapping method: Akduman, Haddar, Kress,...

Non iterative methods

- Nachman's direct reconstruction method: Siltanen et al.
- Indicator functions:
- Enclosure/probe method: Ikehata et al., Nakamura, Potthast,...
- LSM/Factorization methods: Brühl \& Hanke, Cakoni, Colton, Kirsch, Haddar, Kress,...
- Asymptotic methods \& Generalized Polya-Szegö Tensors: Ammari et al., Vogelius et al., Kanget al...


## Background on single layer potential $(1 / 3)$

For every given density $\widehat{q}$ on $\Gamma=\partial \Omega$, the single layer potential is defined by

$$
\mathscr{S}_{\Gamma} \widehat{q}(x)=\int_{\Gamma} G(x-y) \widehat{q}(y) \mathrm{d} \sigma_{y}, \quad x \notin \Gamma,
$$

where

$$
G(x)=-\frac{1}{2 \pi} \log |x|
$$

denotes the fundamental solution of $-\Delta$ in $\mathbb{R}^{2}$.

## Background on single layer potential (2/3)

- $\mathscr{S}_{\Gamma} \widehat{q}$ is harmonic in $\mathbb{R}^{2} \backslash \Gamma$.
- $\mathscr{S}_{\Gamma} \widehat{q}$ satisfies the following jump conditions:

$$
\left[\mathscr{S}_{\Gamma} \widehat{q}\right]_{\mid \Gamma}=0, \quad\left[\partial_{n}\left(\mathscr{S}_{\Gamma} \widehat{q}\right)\right]_{\mid \Gamma}=\widehat{q}
$$

- The trace of the single layer potential, denoted by $S_{\Gamma}$ defines a bounded operator from $H^{-\frac{1}{2}}(\Gamma)$ to $H^{\frac{1}{2}}(\Gamma)$. We denote:

$$
q=\mathrm{S}_{\Gamma} \widehat{q}
$$

- If $\operatorname{Cap}(\Gamma) \neq 1, \mathrm{~S}_{\Gamma}$ is an isometry provided $H^{-\frac{1}{2}}(\Gamma)$ and $H^{\frac{1}{2}}(\Gamma)$ are endowed with the norms:

$$
\|\widehat{q}\|_{-\frac{1}{2}}^{2}=\left\langle\widehat{q}, \mathrm{~S}_{\Gamma} \widehat{q}\right\rangle=\left\langle\mathrm{S}_{\Gamma}^{-1} q, q\right\rangle=\|q\|_{\frac{1}{2}}^{2} .
$$

## Background on single layer potential (3/3)

- The equilibrium density $\widehat{\mathrm{e}}_{\Gamma} \in H^{-\frac{1}{2}}(\Gamma)$ is the unique density such that:

$$
\mathrm{S}_{\Gamma} \widehat{\mathrm{e}}_{\Gamma} \text { is constant on } \Gamma \text { and }\left\langle\widehat{\mathrm{e}}_{\Gamma}, 1\right\rangle=1 \text {. }
$$

- The operator $S_{\Gamma}$ defines an isometry between the spaces

$$
\begin{aligned}
& \widehat{H}(\Gamma):=\left\{\widehat{q} \in H^{-\frac{1}{2}}(\Gamma):\langle\widehat{q}, 1\rangle=0\right\} \\
& H(\Gamma):=\left\{q \in H^{\frac{1}{2}}(\Gamma):\left\langle\widehat{\mathrm{e}}_{\Gamma}, q\right\rangle=0\right\}
\end{aligned}
$$

We introduce the projections:

$$
\Pi_{\Gamma}: H^{\frac{1}{2}}(\Gamma) \rightarrow H(\Gamma) \text { and } \widehat{\Pi}_{\Gamma}: H^{-\frac{1}{2}}(\Gamma) \rightarrow \widehat{H}(\Gamma)
$$

- The following equivalence holds for $q \in H^{\frac{1}{2}}(\Gamma)$ :

$$
q \in H(\Gamma) \Leftrightarrow \int_{\mathbb{R}^{2}}\left|\nabla\left(\mathscr{S}_{\Gamma} \widehat{q}\right)\right|^{2}<+\infty
$$

In this case:

$$
\|\widehat{q}\|_{-\frac{1}{2}}^{2}=\|q\|_{\frac{1}{2}}^{2}=\int_{\mathbb{R}^{2}}\left|\nabla\left(\mathscr{S}_{\Gamma} \widehat{q}\right)\right|^{2}
$$

## Back to the DtN

- The $\operatorname{DtN}$ operator is by assumption valued in $\widehat{H}(\Gamma)$ since:

$$
\int_{\Gamma} \partial_{n} u=-\int_{\gamma} \partial_{n} u=0
$$

- We will consider its restriction to $H(\Gamma)$ and we denote:

$$
\Lambda_{\gamma}:\left.f \in H(\Gamma) \longmapsto \partial_{n} u\right|_{\Gamma} \in \widehat{H}(\Gamma)
$$

- When $\omega=\varnothing$ (there is no obstacle), we denote the $\operatorname{DtN}$ by $\Lambda_{0}$.
- Most of time, we will consider the operator:

$$
\mathrm{R}:=\mathrm{S}_{\Gamma}\left(\Lambda_{\gamma}-\Lambda_{0}\right): H(\Gamma) \rightarrow H(\Gamma)
$$

## The measurements

Let us define the harmonic polynomials:

$$
\mathcal{Z}_{\Gamma}^{m}:=\Pi_{\Gamma} z^{m} \quad \text { and } \quad \overline{\mathcal{Z}}_{\Gamma}^{m}:=\Pi_{\Gamma} \bar{z}^{m}, \quad(m \geqslant 1)
$$

and recall that $\mathrm{R}:=\mathrm{S}_{\Gamma}\left(\Lambda_{\gamma}-\Lambda_{0}\right): H(\Gamma) \rightarrow H(\Gamma)$.
Proposition
The operator $\mathrm{Id}+\mathrm{R}: H(\Gamma) \rightarrow H(\Gamma)$ is invertible and we can define the complex sequences:

$$
\begin{aligned}
\mu_{m} & =\frac{1}{2}\left\langle\mathrm{R}(\mathrm{Id}+\mathrm{R})^{-1} \overline{\mathcal{Z}}_{\Gamma}^{1}, \mathcal{Z}_{\Gamma}^{m}\right\rangle_{\frac{1}{2}, \Gamma}, \\
\nu_{m} & =\frac{1}{2}\left\langle\mathrm{R}(\mathrm{Id}+\mathrm{R})^{-1} \mathcal{Z}_{\Gamma}^{1}, \mathcal{Z}_{\Gamma}^{m}\right\rangle_{\frac{1}{2}, \Gamma}, \quad(m \geqslant 1)
\end{aligned}
$$

- $\mathbf{R}$ is known, so are the sequences $\left(\mu_{m}\right)_{m \geqslant 1}$ and $\left(\nu_{m}\right)_{m \geqslant 1}$.
- The numbers $\mu_{m}$ and $\nu_{m}$ are closely related with the Generalized Pólya-Szegö Tensors appearing in the asymptotic expansion of the DtN for small inclusions (see Ammari et al.).


## The conformal mapping

The boundary $\gamma$ can be described through the conformal mapping that maps the exterior of the unit disk onto the exterior of $\omega\left(a_{1}>0\right)$ :

$$
\phi_{\gamma}: z \mapsto a_{1} z+a_{0}+\sum_{m \geqslant 1} a_{-m} z^{-m} .
$$

In this description:

- $a_{1}>0$ is the (logarithmic) capacity of $\gamma$.
- $a_{0}$ is the conformal center.

The problem of reconstructing the cavity $\omega$ is equivalent to the problem of recovering the complex sequence $\left(a_{k}\right)_{k \leqslant 1}$.

## Explicit reconstruction formula

## Theorem

We have $\mu_{1}>0$ and the coefficients $a_{k}$ can be computed by means of the following formulae:

$$
\begin{aligned}
a_{1} & =\left(\frac{\mu_{1}}{2 \pi}\right)^{\frac{1}{2}} \quad a_{0}=\frac{\mu_{2}}{2 \mu_{1}} \\
a_{-m} & =\mu_{1}^{-\frac{m}{2}} \sum_{\alpha \in \mathrm{A}_{m}} C_{\alpha}\left(\frac{\mu_{2}}{\mu_{1}}\right)^{\alpha_{0}} \nu_{1}^{\alpha_{1}} \nu_{2}^{\alpha_{2}} \ldots \nu_{m}^{\alpha_{m}}, \quad m \geqslant 1
\end{aligned}
$$

where

$$
\mathrm{A}_{m}:=\left\{\alpha \in \mathbb{N}^{m+1}: \alpha_{0}+2 \alpha_{1}+3 \alpha_{2}+\ldots+(m+1) \alpha_{m}=(m+1)\right\}
$$

and

$$
C_{\alpha}:=\frac{(-1)^{|\alpha|+1}}{2^{\alpha_{0}} m} \frac{(2 \pi)^{\frac{m}{2}-\left(\alpha_{1}+\cdots+\alpha_{m}\right)}}{1^{\alpha_{1}} 2^{\alpha_{2}} \ldots m^{\alpha_{m}}}
$$

## Algorithm

1. The space $H(\Gamma)$ is approximated by the finite dimensional space spanned by the family $\left\{\mathcal{Z}_{\Gamma}^{m}, \overline{\mathcal{Z}}_{\Gamma}^{m}, m=1, \ldots, M\right\}$ where

$$
\mathcal{Z}_{\Gamma}^{m}:=\Pi_{\Gamma} z^{m} \quad \text { and } \quad \overline{\mathcal{Z}}_{\Gamma}^{m}:=\Pi_{\Gamma} \bar{z}^{m}, \quad(m \geqslant 1) .
$$

2. We compute the $2 M \times 2 M$ matrix $\mathbf{Q}_{M}$ whose entries are:

$$
\left\langle\overline{\mathcal{Z}}_{\Gamma}^{m}, \mathcal{Z}_{\Gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \Gamma} \text { and }\left\langle\mathcal{Z}_{\Gamma}^{m}, \mathcal{Z}_{\Gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \Gamma} \quad 1 \leqslant m, m^{\prime} \leqslant M
$$

3. We compute the $2 M \times 2 M$ matrix $\mathbf{R}_{M}$ whose entries are:

$$
\left\langle\overline{\mathcal{Z}}_{\Gamma}^{m}, \mathrm{R} \mathcal{Z}_{\Gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \Gamma} \text { and }\left\langle\mathcal{Z}_{\Gamma}^{m}, \mathrm{R} \mathcal{Z}_{\Gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \Gamma} \quad 1 \leqslant m, m^{\prime} \leqslant M
$$

4. An approximation of the vector $\left(\mu_{1}, \nu_{1}, \ldots, \mu_{M}, \nu_{M}\right)$ is given by the first raw of the matrix product:

$$
\mathbf{Q}_{M}\left(\mathbf{Q}_{M}+\mathbf{R}_{M}\right)^{-1} \mathbf{R}_{M}
$$

5. We use the formulae of the Theorem to compute the coefficients $a_{1}, a_{0}, a_{-1}, \ldots, a_{-M}$.

## Numerical results



Figure: Examples of reconstructions with 8 (complex) coefficients. Computations are made with the Matlab Laplace boundary integral equation solver IES (B. Pinçon and A. M.).

## Main ingredients of the proof

Step 1 Getting rid of the outer boundary $\Gamma$
The operator $\mathrm{K}:=(\mathrm{Id}+\mathrm{R})^{-1} \mathrm{R}$ satisfies, for every $f, g \in H(\Gamma)$ :

$$
\langle\mathrm{K} f, g\rangle_{\frac{1}{2}, \Gamma}=\left\langle\Pi_{\gamma}\left(\mathscr{S}_{\Gamma} f\right), \Pi_{\gamma}\left(\mathscr{S}_{\Gamma} g\right)\right\rangle_{\frac{1}{2}, \gamma} .
$$

Step 2 A suitable choice of test functions
Specifying $f$ and $g$ to be the harmonic polynomials we get:

$$
\begin{aligned}
& \left\langle\mathbf{K} \mathcal{Z}_{\Gamma}^{m}, \mathcal{Z}_{\Gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \Gamma}=\left\langle\mathcal{Z}_{\gamma}^{m}, \mathcal{Z}_{\gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \gamma} \\
& \left\langle\mathbf{K} \mathcal{Z}_{\Gamma}^{m}, \overline{\mathcal{Z}}_{\Gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \Gamma}=\left\langle\mathcal{Z}_{\gamma}^{m}, \overline{\mathcal{Z}}_{\gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \gamma} .
\end{aligned}
$$

Step 3 Complex analysis tools
Using the conformal mapping we can compute:

$$
\left\langle\mathcal{Z}_{\gamma}^{m}, \mathcal{Z}_{\gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \gamma} \text { and }\left\langle\mathcal{Z}_{\gamma}^{m}, \overline{\mathcal{Z}}_{\gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \gamma}=\text { function of } a_{k}(k \leqslant 1) .
$$

The identity above can be inverted:

$$
a_{k}=\text { function of } \underbrace{\left\langle\mathcal{Z}_{\gamma}^{m}, \mathcal{Z}_{\gamma}^{1}\right\rangle_{\frac{1}{2}, \gamma}}_{\nu_{m}} \text { and } \underbrace{\left\langle\mathcal{Z}_{\gamma}^{m}, \overline{\mathcal{Z}}_{\gamma}^{1}\right\rangle_{\frac{1}{2}, \gamma}}_{\mu_{m}},(m \geqslant 1) \text {. }
$$

## Boundary integral formulation (step 0)

Theorem
For all $f \in H^{\frac{1}{2}}(\Gamma)$, there exists a unique $(u, c) \in H^{1}(\Omega) \times \mathbb{R}$ such that:

$$
\begin{aligned}
-\Delta u & =0 & & \text { in } \Omega, \\
u & =f & & \text { on } \Gamma, \\
u & =c & & \text { on } \gamma, \\
\int_{\gamma} \partial_{n} u & =0 . & &
\end{aligned}
$$

Moreover, $u$ admits a single layer representation

$$
u=\mathscr{S}_{\Gamma} \widehat{q}+\mathscr{S}_{\gamma} \widehat{p},
$$

where $\widehat{q} \in H^{-\frac{1}{2}}(\Gamma)$ and $\widehat{p} \in H^{-\frac{1}{2}}(\gamma)$ satisfy:

$$
\begin{align*}
& q+\left(\mathscr{S}_{\gamma} \widehat{p}\right)_{\Gamma}=f \\
& \left(\mathscr{S}_{\Gamma} \widehat{q}\right)_{\gamma}+p=c
\end{align*}
$$

## Factorization of the DtN (step 1)

Lemma
If $f \in H(\Gamma)$ then $\widehat{p} \in \widehat{H}(\gamma)$ and $\widehat{q} \in \widehat{H}(\Gamma)$.
Applying the projections $\Pi_{\Gamma}$ and $\Pi_{\gamma}$ to the system:

$$
\begin{align*}
q+\left(\mathscr{S}_{\gamma} \widehat{p}\right)_{\Gamma} & =f \\
\left(\mathscr{S}_{\Gamma} \widehat{q}\right)_{\gamma}+p & =c
\end{align*}
$$

we get:

$$
\left\{\begin{array}{l}
q+\mathrm{K}^{+} p=f \\
\mathrm{~K}^{-} q+p=0
\end{array}\right.
$$

where the operators $\mathrm{K}^{+}$and $\mathrm{K}^{-}$are defined by:

$$
\mathrm{K}^{+} p:=\Pi_{\Gamma}\left(\mathscr{S}_{\gamma} \widehat{p}\right)_{\mid \Gamma} \quad \mathrm{K}^{-} q:=\Pi_{\gamma}\left(\mathscr{S}_{\Gamma} \widehat{q}\right)_{\mid \gamma}
$$

## Factorization of the DtN (step 1)

## Proposition

The operators $\mathrm{K}^{ \pm}$enjoy the following properties:

- $\mathrm{K}^{+}$(respectively $\mathrm{K}^{-}$) is compact from $H(\gamma)$ onto $H(\Gamma)$ (respectively from $H(\Gamma)$ onto $H(\gamma)$ ).
- For all $p, q \in H(\gamma) \times H(\Gamma)$ :

$$
\left\langle\mathrm{K}^{+} p, q\right\rangle_{\frac{1}{2}, \Gamma}=\left\langle p, \mathrm{~K}^{-} q\right\rangle_{\frac{1}{2}, \gamma} .
$$

- $\mathrm{K}^{+}: H(\gamma) \rightarrow H(\Gamma)$ and $\mathrm{K}^{-}: H(\Gamma) \rightarrow H(\gamma)$ are contraction operators:

$$
\left\|\mathrm{K}^{ \pm}\right\|<1
$$

## Factorization of the DtN (step 1)

Set now

$$
\mathrm{K}:=\mathrm{K}^{+} \mathrm{K}^{-}: H(\Gamma) \rightarrow H(\Gamma)
$$

and recall that:

$$
\mathrm{R}:=\mathrm{S}_{\Gamma}\left(\Lambda_{\gamma}-\Lambda_{0}\right): H(\Gamma) \rightarrow H(\Gamma)
$$

Theorem (Factorization)
The following identities hold true:

$$
\mathrm{R}=(\mathrm{Id}-\mathrm{K})^{-1} \mathrm{~K}
$$

or equivalently

$$
\mathrm{K}=(\mathrm{Id}+\mathrm{R})^{-1} \mathrm{R}
$$

In other words, the knowledge of $\Lambda_{\gamma}\left(\right.$ and $\left.\Lambda_{0}\right)$ entirely determines the operator K .

## Factorization of the DtN (steps 1-2)

The identity

$$
(\mathrm{Id}+\mathrm{R})^{-1} \mathrm{R}=\mathrm{K}^{+} \mathrm{K}^{-}
$$

reads equivalently for $f, g \in H(\Gamma)$ :

$$
\left\langle(\mathrm{Id}+\mathrm{R})^{-1} \mathrm{R} f, g\right\rangle_{\frac{1}{2}, \Gamma}=\left\langle\mathrm{K}^{+} \mathrm{K}^{-} f, g\right\rangle_{\frac{1}{2}, \Gamma}=\left\langle\mathrm{K}^{-} f, \mathrm{~K}^{-} g\right\rangle_{\frac{1}{2}, \gamma},
$$

and by definition:

$$
\left\langle\mathrm{K}^{-} f, \mathrm{~K}^{-} g\right\rangle_{\frac{1}{2}, \gamma}=\left\langle\Pi_{\gamma}\left(\mathscr{S}_{\Gamma} f\right), \Pi_{\gamma}\left(\mathscr{S}_{\Gamma} g\right)\right\rangle_{\frac{1}{2}, \gamma} .
$$

In particular, for the harmonic polynomials, we obtain:

$$
\left\langle\mathbf{K} \mathcal{Z}_{\Gamma}^{m}, \mathcal{Z}_{\Gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \Gamma}=\left\langle\mathbf{K}^{-} \mathcal{Z}_{\Gamma}^{m}, \mathrm{~K}^{-} \mathcal{Z}_{\Gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \gamma}=\left\langle\mathcal{Z}_{\gamma}^{m}, \mathcal{Z}_{\gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \gamma} .
$$

## Complex analysis (step 3)

The next (and last) step is to relate the data $\left\langle\mathcal{Z}_{\gamma}^{m}, \mathcal{Z}_{\gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \gamma}$ to the unknown geometry.
By definition:

$$
\left\langle\mathcal{Z}_{\gamma}^{m}, \mathcal{Z}_{\gamma}^{m^{\prime}}\right\rangle_{\frac{1}{2}, \gamma}=\int_{\gamma} \widehat{\mathcal{Z}}_{\gamma}^{m} \mathcal{Z}_{\gamma}^{m^{\prime}}
$$

where

$$
\widehat{\mathcal{Z}}_{\gamma}^{m}=\left.\left[\partial_{n}\left(\mathscr{S}_{\gamma} \mathcal{Z}_{\gamma}^{m}\right)\right]\right|_{\gamma} .
$$

The exterior Dirichlet problem:

$$
\begin{aligned}
-\Delta u & =0 & & \text { in } \mathbb{R}^{2} \backslash \bar{\omega} \\
u & =\mathcal{Z}_{\gamma}^{m} & & \text { on } \gamma \\
|u(x)| & =O\left(|x|^{-1}\right) & & \text { as }|x| \rightarrow+\infty,
\end{aligned}
$$

can be explicitly solved by means of the conformal mapping that maps the exterior of the unit disk onto the exterior of $\omega\left(a_{1}>0\right)$ :

$$
\phi_{\gamma}: z \mapsto a_{1} z+a_{0}+\sum_{m \geqslant 1} a_{-m} z^{-m} .
$$

## Complex analysis (step 3)

In particular, we can prove:
Lemma
For every $m \geqslant 1$ :

$$
\mu_{m}:=\frac{1}{2}\left\langle\mathcal{Z}_{\gamma}^{m}, \overline{\mathcal{Z}}_{\gamma}^{1}\right\rangle_{\frac{1}{2}, \gamma}=a_{1} \int_{-\pi}^{\pi} e^{-i t} \phi_{\gamma}^{m}\left(e^{i t}\right) \mathrm{d} t
$$

and

$$
\begin{aligned}
\nu_{m}:=\frac{1}{2}\left\langle\mathcal{Z}_{\gamma}^{m}, \mathcal{Z}_{\gamma}^{1}\right\rangle_{\frac{1}{2}, \gamma} & =a_{1} \int_{-\pi}^{\pi} e^{i t} \phi_{\gamma}^{m}\left(e^{i t}\right) \mathrm{d} t \\
& =2 \pi a_{1} \sum_{|\alpha|=-1} a_{\alpha_{1}} \ldots a_{\alpha_{m}} .
\end{aligned}
$$

These equalities can be inverted and provide the reconstruction formulae of the Theorem.

## Comments

- As a Corollary of the main Theorem, we deduce that the coefficients $a_{k}$ depend smoothly on the DtN map R.
- We use the family $\left\{\mathcal{Z}_{\gamma}^{m}, \overline{\mathcal{Z}}_{\gamma}^{m} m \geqslant 1\right\}$ (harmonic polynomials) as test functions. Other choices are possible as e.g.

$$
\mathcal{Z}_{\gamma}^{m}(\cdot-r) \text { with } r \in \mathbb{C} \text {. }
$$

This choice impacts the quality of the reconstruction.

- The factorization result generalizes to 3D and/or multiple obstacles.


## Further numerical tests: Influence of the shift $r$



Figure: Examples of reconstructions with 8 (complex) coefficients. Computations are made with the Matlab Laplace boundary integral equation solver IES (B. Pinçon and A. M.).

## Further numerical tests: Influence of the shift $r$



Figure: Examples of reconstructions with 8 (complex) coefficients. Computations are made with the Matlab Laplace boundary integral equation solver IES (B. Pinçon and A. M.).

## Further numerical tests: Influence of the shift $r$



Figure: Examples of reconstructions with 8 (complex) coefficients. Computations are made with the Matlab Laplace boundary integral equation solver IES (B. Pinçon and A. M.).

## Further numerical tests: Influence of the shift $r$



Figure: Examples of reconstructions with 8 (complex) coefficients. Computations are made with the Matlab Laplace boundary integral equation solver IES (B. Pinçon and A. M.).

## Further numerical tests: Noisy data



Figure: Reconstruction using $a_{1}, \ldots, a_{-4}$ with $5 \%$ of noise.

Further numerical tests: Influence of the outer boundary



## Identifiability



Straightforward arguments requiring only one (non-constant) measurement:

- Assume that two cavities give the same measurement.
- Define $\psi=\psi_{1}-\psi_{2}$.
- $\Delta \psi=0$ and $\partial_{n} \psi=\psi=0$ on $\Gamma$, hence $\psi=0$.
- $c_{1}=c_{2}=c$ and $\psi_{2}=c$ on $\tilde{\gamma}_{1}$. Then $\psi_{2}=c$ in $\Omega$.

