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The problem in a glance

Ω

ω γ

Γ

Settings

ω is the obstacle immersed in a perfect fluid.

Ω is the domain of the fluid.

ϕ is the harmonic potential of the fluid in Ω and then ∇ϕ is the
fluid velocity field.

The slip boundary condition on γ reads: ∂nϕ = 0.



The problem in a glance

Ω

ω γ

Γ

Problem statement
Knowing the Neumann-to-Dirichlet map:

∂nϕ ∈ H−
1
2 (Γ) 7→ ϕ ∈ H 1

2 (Γ),

how to reconstruct the obstacle ω?



The problem in a glance

Restatement in terms of the stream function
The stream function ψ (ϕ+ iψ is holomorphic in Ω) sastifies:

−∆ψ = 0 in Ω

ψ = c on γ

ψ = f on Γ

where the constant c ∈ R is such that:∫
γ

∂nψ = 0.

Problem statement
Knowing the Dirichlet-to-Neumann (DtN) map:

f ∈ H 1
2 (Γ) 7→ ∂nψ ∈ H−

1
2 (Γ),

how to reconstruct the obstacle ω?



Calderón’s conductivity problem

σ1 > 0

σ0 = 1 Γ

−div(σ∇u) = 0 in Ω0 ⊂ R2,

u = f on Γ.

Problem statement
Knowing the Dirichlet-to-Neumann (DtN) map:

f ∈ H 1
2 (Γ) 7→ ∂nu ∈ H−

1
2 (Γ),

how to reconstruct the piecewise constant conductivity σ?



Calderón’s conductivity problem

We recover the initial problem by letting σ1 → +∞ (Highly
conducting inclusion):

−∆u = 0 in Ω,

u = f on Γ,

u = c on γ,

where c is the constant such that:

∫
γ

∂nu = 0.



Bibliographical comments

Identifiability
Only one measurement required (straightforward) see e.g.
Alessandrini & Rondi, 2001, Kress, 2004.

Stability
Logarithmic stability is best possible; see e.g. Alessandrini (IP, 2007)
or Uhlmann (IP, 2009) and references therein.



Bibliographical comments

Reconstruction

Iterative methods

Optimization methods: Borcea, Dobson, Hanke, Santosa,...

Quasi-reversibility + Level Sets: Bourgeois et al....

Conformal mapping method: Akduman, Haddar, Kress,...

Non iterative methods

Nachman’s direct reconstruction method: Siltanen et al.

Indicator functions:

Enclosure/probe method: Ikehata et al., Nakamura,
Potthast,...
LSM/Factorization methods: Brühl & Hanke, Cakoni,
Colton, Kirsch, Haddar, Kress,...

Asymptotic methods & Generalized Polya-Szegö Tensors:
Ammari et al., Vogelius et al., Kanget al...



Background on single layer potential (1/3)

For every given density q̂ on Γ = ∂Ω, the single layer potential is
defined by

SΓq̂(x) =

∫
Γ

G(x− y)q̂(y) dσy, x /∈ Γ,

where

G(x) = − 1

2π
log |x|

denotes the fundamental solution of −∆ in R2.



Background on single layer potential (2/3)

SΓq̂ is harmonic in R2 \ Γ.

SΓq̂ satisfies the following jump conditions:

[SΓq̂ ]|Γ = 0, [∂n(SΓq̂)]|Γ = q̂.

The trace of the single layer potential, denoted by SΓ defines a
bounded operator from H−

1
2 (Γ) to H

1
2 (Γ).

We denote:
q = SΓq̂.

If Cap(Γ) 6= 1, SΓ is an isometry provided H−
1
2 (Γ) and H

1
2 (Γ)

are endowed with the norms:

‖q̂‖2− 1
2

= 〈q̂,SΓq̂〉 = 〈S−1
Γ q, q〉 = ‖q‖21

2
.



Background on single layer potential (3/3)
The equilibrium density êΓ ∈ H−

1
2 (Γ) is the unique density such

that:
SΓêΓ is constant on Γ and 〈êΓ, 1〉 = 1.

The operator SΓ defines an isometry between the spaces

Ĥ(Γ) :=
{
q̂ ∈ H− 1

2 (Γ) : 〈q̂, 1〉 = 0
}
,

H(Γ) :=
{
q ∈ H 1

2 (Γ) : 〈êΓ, q〉 = 0
}
.

We introduce the projections:

ΠΓ : H
1
2 (Γ)→ H(Γ) and Π̂Γ : H−

1
2 (Γ)→ Ĥ(Γ).

The following equivalence holds for q ∈ H 1
2 (Γ):

q ∈ H(Γ) ⇔
∫
R2

|∇(SΓq̂)|2 < +∞.

In this case:

‖q̂‖2− 1
2

= ‖q‖21
2

=

∫
R2

|∇(SΓq̂)|2.



Back to the DtN

The DtN operator is by assumption valued in Ĥ(Γ) since:∫
Γ

∂nu = −
∫
γ

∂nu = 0.

We will consider its restriction to H(Γ) and we denote:

Λγ : f ∈ H(Γ) 7−→ ∂nu
∣∣
Γ
∈ Ĥ(Γ).

When ω = ∅ (there is no obstacle), we denote the DtN by Λ0.

Most of time, we will consider the operator:

R := SΓ(Λγ − Λ0) : H(Γ)→ H(Γ).



The measurements

Let us define the harmonic polynomials:

ZmΓ := ΠΓz
m and ZmΓ := ΠΓz̄

m, (m > 1),

and recall that R := SΓ(Λγ − Λ0) : H(Γ)→ H(Γ).

Proposition
The operator Id + R : H(Γ)→ H(Γ) is invertible and we can define
the complex sequences:

µm =
1

2
〈R(Id + R)−1Z1

Γ,ZmΓ 〉 12 ,Γ,

νm =
1

2
〈R(Id + R)−1Z1

Γ,ZmΓ 〉 12 ,Γ, (m > 1).

R is known, so are the sequences (µm)m>1 and (νm)m>1.

The numbers µm and νm are closely related with the Generalized
Pólya-Szegö Tensors appearing in the asymptotic expansion of
the DtN for small inclusions (see Ammari et al.).



The conformal mapping

The boundary γ can be described through the conformal mapping
that maps the exterior of the unit disk onto the exterior of ω (a1 > 0):

φγ : z 7→ a1z + a0 +
∑
m>1

a−mz
−m.

In this description:

a1 > 0 is the (logarithmic) capacity of γ.

a0 is the conformal center.

The problem of reconstructing the cavity ω is equivalent to the
problem of recovering the complex sequence (ak)k61.



Explicit reconstruction formula

Theorem
We have µ1 > 0 and the coefficients ak can be computed by means of
the following formulae:

a1 =
(µ1

2π

) 1
2

a0 =
µ2

2µ1

a−m = µ1
−m

2

∑
α∈Am

Cα

(
µ2

µ1

)α0

να1
1 να2

2 . . . ναm
m , m > 1,

where

Am := {α ∈ Nm+1 : α0 + 2α1 + 3α2 + . . .+ (m+ 1)αm = (m+ 1)}

and

Cα :=
(−1)|α|+1

2α0m

(2π)
m
2 −(α1+···+αm)

1α12α2 . . .mαm
.



Algorithm

1. The space H(Γ) is approximated by the finite dimensional space
spanned by the family {ZmΓ ,Z

m

Γ , m = 1, . . . ,M} where

ZmΓ := ΠΓz
m and ZmΓ := ΠΓz̄

m, (m > 1).

2. We compute the 2M × 2M matrix QM whose entries are:

〈ZmΓ ,Zm
′

Γ 〉 12 ,Γ and 〈ZmΓ ,Zm
′

Γ 〉 12 ,Γ 1 6 m,m′ 6M.

3. We compute the 2M × 2M matrix RM whose entries are:

〈ZmΓ ,RZm
′

Γ 〉 12 ,Γ and 〈ZmΓ ,RZm
′

Γ 〉 12 ,Γ 1 6 m,m′ 6M.

4. An approximation of the vector (µ1, ν1, . . . , µM , νM ) is given by
the first raw of the matrix product:

QM (QM + RM )−1RM .

5. We use the formulae of the Theorem to compute the coefficients
a1, a0, a−1, . . . , a−M .



Numerical results

Figure : Examples of reconstructions with 8 (complex) coefficients.

Computations are made with the Matlab Laplace boundary integral
equation solver IES (B. Pinçon and A. M.).



Main ingredients of the proof
Step 1 Getting rid of the outer boundary Γ

The operator K := (Id + R)−1R satisfies, for every f, g ∈ H(Γ):

〈Kf, g〉 1
2 ,Γ

= 〈Πγ(SΓf),Πγ(SΓg)〉 1
2 ,γ
.

Step 2 A suitable choice of test functions
Specifying f and g to be the harmonic polynomials we get:

〈KZmΓ ,Zm
′

Γ 〉 12 ,Γ = 〈Zmγ ,Zm
′

γ 〉 12 ,γ

〈KZmΓ ,Z
m′

Γ 〉 12 ,Γ = 〈Zmγ ,Z
m′

γ 〉 12 ,γ .

Step 3 Complex analysis tools
Using the conformal mapping we can compute:

〈Zmγ ,Zm
′

γ 〉 12 ,γ and 〈Zmγ ,Z
m′

γ 〉 12 ,γ = function of ak (k 6 1).

The identity above can be inverted:

ak = function of 〈Zmγ ,Z1
γ〉 12 ,γ︸ ︷︷ ︸

νm

and 〈Zmγ ,Z
1

γ〉 12 ,γ︸ ︷︷ ︸
µm

, (m > 1).



Boundary integral formulation (step 0)

Theorem
For all f ∈ H 1

2 (Γ), there exists a unique (u, c) ∈ H1(Ω)×R such that:

−∆u = 0 in Ω,

u = f on Γ,

u = c on γ,∫
γ

∂nu = 0.

Moreover, u admits a single layer representation

u = SΓq̂ + Sγ p̂,

where q̂ ∈ H− 1
2 (Γ) and p̂ ∈ H− 1

2 (γ) satisfy:

q + (Sγ p̂)Γ = f (Γ),

(SΓq̂)γ + p = c (γ).



Factorization of the DtN (step 1)

Lemma
If f ∈ H(Γ) then p̂ ∈ Ĥ(γ) and q̂ ∈ Ĥ(Γ).

Applying the projections ΠΓ and Πγ to the system:

q + (Sγ p̂)Γ = f (Γ),

(SΓq̂)γ + p = c (γ),

we get: {
q + K+p = f (Γ),

K−q + p = 0 (γ),

where the operators K+ and K− are defined by:

K+p := ΠΓ(Sγ p̂)|Γ K−q := Πγ(SΓq̂)|γ .



Factorization of the DtN (step 1)

Proposition
The operators K± enjoy the following properties:

K+ (respectively K−) is compact from H(γ) onto H(Γ)
(respectively from H(Γ) onto H(γ)).

For all p, q ∈ H(γ)×H(Γ):

〈K+p, q〉 1
2 ,Γ

= 〈p,K−q〉 1
2 ,γ
.

K+ : H(γ)→ H(Γ) and K− : H(Γ)→ H(γ) are contraction
operators:

‖K±‖ < 1.



Factorization of the DtN (step 1)

Set now
K := K+K− : H(Γ)→ H(Γ)

and recall that:

R := SΓ(Λγ − Λ0) : H(Γ)→ H(Γ).

Theorem (Factorization)
The following identities hold true:

R = (Id− K)−1K,

or equivalently
K = (Id + R)−1R.

In other words, the knowledge of Λγ (and Λ0) entirely determines the
operator K .



Factorization of the DtN (steps 1-2)

The identity
(Id + R)−1R = K+K−

reads equivalently for f, g ∈ H(Γ):

〈(Id + R)−1Rf, g〉 1
2 ,Γ

= 〈K+K−f, g〉 1
2 ,Γ

= 〈K−f,K−g〉 1
2 ,γ
,

and by definition:

〈K−f,K−g〉 1
2 ,γ

= 〈Πγ(SΓf),Πγ(SΓg)〉 1
2 ,γ
.

In particular, for the harmonic polynomials, we obtain:

〈KZmΓ ,Zm
′

Γ 〉 12 ,Γ = 〈K−ZmΓ ,K−Zm
′

Γ 〉 12 ,γ = 〈Zmγ ,Zm
′

γ 〉 12 ,γ .



Complex analysis (step 3)
The next (and last) step is to relate the data 〈Zmγ ,Zm

′

γ 〉 12 ,γ to the
unknown geometry.
By definition:

〈Zmγ ,Zm
′

γ 〉 12 ,γ =

∫
γ

Ẑmγ Zm
′

γ ,

where
Ẑmγ =

[
∂n(SγZmγ )

]∣∣
γ
.

The exterior Dirichlet problem:

−∆u = 0 in R2 \ ω
u = Zmγ on γ

|u(x)| = O(|x|−1) as |x| → +∞,

can be explicitly solved by means of the conformal mapping that
maps the exterior of the unit disk onto the exterior of ω (a1 > 0):

φγ : z 7→ a1z + a0 +
∑
m>1

a−mz
−m.



Complex analysis (step 3)

In particular, we can prove:

Lemma
For every m > 1:

µm :=
1

2
〈Zmγ ,Z

1

γ〉 12 ,γ = a1

∫ π

−π
e−itφmγ (eit)dt,

and

νm :=
1

2
〈Zmγ ,Z1

γ〉 12 ,γ = a1

∫ π

−π
eitφmγ (eit)dt

= 2πa1

∑
|α|=−1

aα1
. . . aαm

.

These equalities can be inverted and provide the reconstruction
formulae of the Theorem.



Comments

As a Corollary of the main Theorem, we deduce that the
coefficients ak depend smoothly on the DtN map R.

We use the family {Zmγ ,Z
m

γ m > 1} (harmonic polynomials) as
test functions. Other choices are possible as e.g.

Zmγ (· − r) with r ∈ C.

This choice impacts the quality of the reconstruction.

The factorization result generalizes to 3D and/or multiple
obstacles.



Further numerical tests: Influence of the shift r

Figure : Examples of reconstructions with 8 (complex) coefficients.

Computations are made with the Matlab Laplace boundary integral
equation solver IES (B. Pinçon and A. M.).
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Further numerical tests: Influence of the shift r

Figure : Examples of reconstructions with 8 (complex) coefficients.

Computations are made with the Matlab Laplace boundary integral
equation solver IES (B. Pinçon and A. M.).



Further numerical tests: Noisy data
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Figure : Reconstruction using a1, . . . , a−4 with 5% of noise.



Further numerical tests: Influence of the outer boundary
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Identifiability

Γ

γ2Ω
γ1

ω1 ω2

γ̃1

Straightforward arguments requiring only
one (non-constant) measurement:

Assume that two cavities give the
same measurement.

Define ψ = ψ1 − ψ2.

∆ψ = 0 and ∂nψ = ψ = 0 on Γ,
hence ψ = 0.

c1 = c2 = c and ψ2 = c on γ̃1. Then
ψ2 = c in Ω.

back
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